
www.manaraa.com

Testing of Computer Software with
Temporal Constraints

A State-of-The-Art Report

Anders Pettersson
Department of Computer Science and Engineering

Mälardalen University, Västerås, Sweden
anders.pettersson@mdh.se

www.manaraa.com

Sammanfattning

Förekomsten av datorer i de konsumentprodukter vi använderdagligen ökar
hela tiden. Många av dessa datorer styrs av programvara. Föratt garantera att
produkten är användbar måste programvaran testas. Tyvärr är denna testning
ofta åsidosatt på grund av att testning är resurskrävande och kostsam. Ett sätt
att underlätta testningen är att tillhandahålla verktyg och metoder som reduc-
erar arbetsinsatsen för utvecklare av programvara vid testning. Denna översikt
av litteratur inom testning av programvara har till syfte att peka på existerande
metoder och verktyg för testing av programvara, speciellt idatorsystem där
det finns krav på att tidsbeteendet inte strider mot specifikationen, så kallade
realtidssystem.

www.manaraa.com

Abstract

Computers in consumers product are increasing. Many of these computers are
controlled by software. To ensure that the consumer can use the product as
expected the software must be tested. Unfortunately, testing is often neglected
because it is costly and resource demanding. One solution tothis is to make test
tools and test methods available to the developers of software. The purpose of
this report is to point out methods and tools for testing of computer software,
especially for software that have constraints on their temporal behavior, i.e.,
real-time systems.

www.manaraa.com

Contents

1 Introduction 7
1.1 Outline . 8
1.2 Terminology . 8

2 Computer Software Testing 11
2.1 Planning for Testing . 12

2.1.1 Test Plan . 12
2.1.2 Fault Hypothesis . 13
2.1.3 Test Cases . 14
2.1.4 Initial Test Case Selection 14
2.1.5 Test Case Selection for Re-testing 14

2.2 Analysis of Computer Software Execution Behavior 15
2.3 Execution Behavior . 17

2.3.1 Synchronization . 18
2.3.2 Observability . 18
2.3.3 Determinism . 19
2.3.4 Controllability . 20
2.3.5 Reproducibility . 20
2.3.6 Testability . 21

2.4 Testing of Sequential Programs 22
2.4.1 Unit Testing . 23
2.4.2 Integration Testing 23
2.4.3 System Testing . 23

3 Regression Testing 25
3.1 General Regression Test Assumptions 27

3.1.1 Cost Models . 28

www.manaraa.com

CONTENTS 5

3.2 Regression Test Techniques 28
3.3 Algorithms for Regression Test Selection 30

3.3.1 Slicing Algorithm. 30
3.3.2 Incremental Regression Testing. 31
3.3.3 Firewall concept for Regression Testing. 32

4 Testing of Concurrent Programs 35
4.1 Methods . 35

5 Testing of Real-Time Systems 37
5.1 Distributed Real-Time System 38
5.2 Testing of Real-Time Systems 38

5.2.1 Testing for Functional Correctness 40
5.2.2 Testing for Temporal Correctness 41
5.2.3 Test Strategies . 42
5.2.4 Test Bed Architectures 43
5.2.5 Environment Simulators 44

5.3 Regression Testing of Real-Time Systems 44

6 Summary 47

www.manaraa.com

6 CONTENTS

www.manaraa.com

Chapter 1

Introduction

In our daily life we are more and more dependent on computers and their soft-
ware. When we travel by airplane, use robots at work, or even watch TV at
home, we expect them not to malfunction. Therefore, it is important that the
software does what the user expects and that it does not fail.

To establish the quality of the softwareValidationandVerificationare used.
Validation is used to establish that the software supplies the service specified
in the requirements. Verification is used to establish that the properties of sup-
plied services are correct according to the requirements intheir specifications.
Verification can be done by statically analyzing the software or analyzing the
software dynamically by executing the program, i.e.,testing.

Based on the execution behavior, computer software can be categorized
into three domains:

• Sequential programs, which are programs that runs from invocation to
termination without interruptions or interleaving.

• Concurrent programs, which are programs that execute within the same
time interval either by interleaved or simultaneous execution.

• Real-time systems, which are programs where the correctness depends
on the functional behavior as well as the temporal behavior.

For these domains, the objective of testing is to find deviations between the
specified requirements and the observed results during operation of the soft-
ware.

www.manaraa.com

8 Terminology

Testing is a necessity in development of correct software. However, testing
is not trivial even if it seems to be. For example, assume a computer program
that takes one input from a user and the user is supposed to press only one key
but mistakenly press two keys simultaneously. If it is crucial for the function-
ality that only one key is pressed at a time, all possible two-key presses must
be tested in order to establish the correctness.

In the example above, the software should be tested with all combinations
(n-key presses) under all circumstances to ensure that the program is free from
defects. But the amount of tests then rapidly grows to be enormous, and so are
also the costs for the testing. Consequently, exhaustive testing is in most cases
not possible.

In this state-of-the-art report we will discuss software testing and how dif-
ferent test methods can be applied on different types of software: sequential
programs, concurrent programs and real-time systems. The focus will be on
testing of real-time systems. But we will also discuss testing of non-real-time
software to give an introduction to software testing in general.

1.1 Outline

The outline of the rest of this report is as follows: In Chapter 2 we discuss
the fundamentals of testing. Testing of sequential programs is discussed in
Chapter 2.4. In Chapter 3 we will discussregression testing, i.e., how to test
software after the code is modified or needs a retest. In Chapter 4 we will dis-
cuss testing of concurrent programs. In Chapter 5 testing ofreal-time software
is discussed, focusing mainly on functional testing of real-time systems.

1.2 Terminology

There exist several standards for the terminology used whendiscussing com-
puter software testing, both international and national, for example, the IEEE
standard, the SIS standard and the ISO standard. In this report a terminology
that conforms to IEEE STD 610.12-1990 [26] will be used. Below, we give the
terminology that is used in this report.

Correctness By correctness of the software it is meant that the behavior of
the program execution conforms to the behavior specified in the program
specification.

www.manaraa.com

Terminology 9

Regression TestingSelective retest of a system or component to verify that
modifications have not caused unintended effects and that the system or
component still complies with its specified requirements [26].

Software, Application and Program In this reportsoftware, applicationand
programare all an executable computer file that delivers services accord-
ing to a specified behavior. Although,softwarecan also be the documen-
tation and source code of the program, this will not be the interpretation
used here.

Task Each individualtaskcan bee seen as a small sequential program and is
the smallest user defined execution unit. Two or more tasks can, by com-
municating with each other, form a more complex program and solve
more complex problems than an individual task.

Test Test is an activity in which a system or component is executedunder spec-
ified conditions, the results are observed or recorded, and an evaluation
is made of some aspects of the system or component [26].

Testing Testing is the process of operating a system or component under spec-
ified conditions, observing or recording the results, and making an eval-
uation of some aspects of the system or component [26].

Threads and ProcessesIn this report we do not distinguish between tasks,
threads and processes. However, in general there is a significant differ-
ence between them, but the difference do not affect the assumptions in
our discussions, and hence we will here use task to denote allthree.

Validation Is the process of evaluating a system or a component during or
at the end of the development process to determine whether itsatisfies
specified requirements [26], i.e., validation aims at answering the ques-
tion are we building the right system?

Verification Is the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase [26], i.e., verification aims at answering
the questionare we building the system right?

www.manaraa.com

10 Terminology

www.manaraa.com

Chapter 2

Computer Software Testing

The objective of testing is to reveal failures to eliminate the faults in the soft-
ware, and thereby increase the confidence in the software. This is done by
applying test data to the software. But this raises several issues, such as how
to select test data, how to measure the progress of testing and when to stop the
testing.

The test data (test cases) must be selected to be sufficient to satisfy the re-
quirements, i.e., the test data adequacy. According to Zhu et al. [48], one way to
categorize test data adequacy is to base the classification on the source of infor-
mation for deriving test cases:white-box testing(implementation based) and
specification-basedblack-box testing(specification-based). Test cases gener-
ated using the black-box approach are based on the specification and used for
functional testing and interface testing duringintegration testingandsystem
testing. It is also used for performance testing, stress testing, and reliability
testing. The white-box (orglass-box) approach is based on knowledge of the
implementation and is used during unit testing in order to establish to what
extent the software is tested.

Testing approaches can be divided into:coverage-based testing(structural
testing),fault-based testinganderror-based testing. Coverage-based testing
methods can further be divided into: control-flow based and data-flow based
testing.

Both control-flow and data-flow structural testing are oftenbased on a flow-
graph model of the structure of the program. The model is derived by statically
analyzing the software either by the compiler or an analysistool.

In fault-based testing it may not be sufficient to select testdata to meet

www.manaraa.com

12 Planning for Testing

some coverage criterion, but also chose test data based on towhat extent the
test is expected to reveal a failure. Based on the approach toreveal failures,
testing methods can be divided into:fault seeding, mutation-basedand fault
injecting.

Fault seeding testing is to intentionally add faults that are known to reveal
a failure. Ifm faults are seeded andn faults are found, then based onn andm

an estimation of the remaining non-seeded faults can be made.
Mutation testing is to create a set of mutated programs basedon an original

program. Each of the mutated programs is expected to reveal asingle failure.
If the failure is revealed the test is then later used to test the original program.
When all mutated programs are tested an optimal set of test inputs can be de-
termined.

Fault injection evaluates the impact of changing the code orthe state of the
software. This is done by using perturbation to change the code and observe the
result by instrumentation. Fault injection is mostly used to test the reliability
of the software.

Testing can also be used (1) to establish the level of confidence that the
program will not fail during its operation and (2) to establish that specified
properties are satisfied. In contrast to fault-revealing tests this is done by ap-
plying test cases to demonstrate the absence of faults. Thatis, a successful test
case does not reveal failures.

To be successful in testing there must be guidance for when totest, how to
test, what to test and what tools to use for testing, i.e., there is a need for a test
plan.

2.1 Planning for Testing

2.1.1 Test Plan

A test plan is the documentation of the conditions and requirements that must
be set for testing. The documentation can be formal or informal but it is im-
portant that there are no ambiguous requirements. One way toachieve unam-
biguous documentation is to use mathematics [28].

A well-defined test plan should include, at least, well documented require-
ments in a specification, strategies for initial testing, integration testing and
system testing. According to Leung et al. [22] the test plan must also include:

• A strategy for regression testing.

www.manaraa.com

Planning for Testing 13

• A guideline for the test procedure, including a test design strategy, cov-
erage criteria and information on how to handle test cases that do not
need to be re-executed.

• Information for identification of test classes, test case execution order,
and changes made to the software.

However this covers the general case. For real-time systems, especially safety-
critical systems, it is often the case that all test cases areexercised in a retest.
Then we do not have to have strategies for selecting which test-cases to execute.

In Bertolino et al. [4] the authors present an approach for deriving test plans
for integration testing from a formal description based on software architec-
tures. The purpose of the derived test plan is to describe thecomponents of the
software and the connections between these components.

Rational Unified Process(RUP) is a software development tool that en-
forces creation of test plans divided into well-defined phases during the life
cycle of the software. RUP also encourages developers to start testing the soft-
ware as early as possible by performing inspections on documents such as de-
sign specification and functional requirements. It has beenshown that early
inspections of source code and documentation can reveal 80%of specification
and programmer faults [8]. By using RUP and inspections in the early phases
of the development, test efforts are reduced in the later phases.

2.1.2 Fault Hypothesis

The fault hypothesis is the definition of what a failing behavior is according
to the specification of the software [3]. What a failing behavior is depends on
the current failure mode of the system. In Clarke et al. [7] a classification of
different failure modes of sequential programs are defined:control failures,
value failures, addressing failures, termination failuresandinput failures.

For concurrent programs, in addition to the failure modes above the follow-
ing failures must be considered:ordering failures, synchronization errorsand
interleaving failures.

In [19] the propagation of a programmers mistake or an erroneous out-
put leading to a failure is defined asFault → Error → Failure. How-
ever, according to the IEEE STD [26] the words fault and errorare used inter-
changeably. The above definition of fault and error is used inthe fault toler-
ance discipline. Consequently, with the same meaning as above the definition
Error → Fault → Failure can also be found in the literature.

www.manaraa.com

14 Planning for Testing

2.1.3 Test Cases

There must also be specified input sequences for the test execution. These input
sequences are calledtest cases; a test suiteis a collection of test cases.

For sequential programs a test case is often the input parameter to the pro-
gram and the expected output from the program. Whereas, in concurrent pro-
grams the test cases are an input parameter, output parameter and some speci-
fied behavior of the system. For example, if the testing strategy is to find errors
with respect to in which order the task are synchronizing, then the input would
consists of the input parameter to the program and a valid synchronization se-
quence [6].

2.1.4 Initial Test Case Selection

In the initial testing, the first test cases can be created based on a specification
(black-box). Later on when the specification is implemented, the set of test
cases can be extended with structural-based test cases (white-box).

Rothermel et al. [30] define a test case as< identifier, input, output >

in order to achieve maintainability and storage of test cases in a database. As
complement to a test case definition, a test history must often be maintained
together with scripts for test case execution. A test history is helpful when re-
validating the test cases in a re-test of modified programs. Scripts for test case
execution are helpful in larger software projects, if the number of test cases are
too many to handle manually or when tests are exercised during non-working
time [27].

2.1.5 Test Case Selection for Re-testing

Leung et al. [22] propose how to categorize test cases into different classes.
These classes are: reusable test cases, re-testable test cases and obsolete test
cases.

• Reusable test cases are testing the unmodified parts of the specification
and the program constructs. Re-execution of these test cases is hopefully
not necessary since they produce the same output as the previous tests.

• Re-testable test cases are testing the program constructs that are modi-
fied, although the specification is not modified.

• Obsolete test cases are test cases that are no longer relevant because of
that input/output relations no longer are valid, the program has been

www.manaraa.com

Analysis of Computer Software Execution Behavior 15

modified so the test case no longer test the program construct, or the
test case no longer contribute to the structural coverage.

There is also a need to distinguish re-testable test case from obsolete test
cases. This introduces two new classes of test cases.

• New-structural test cases

• New-specification test cases

Wong et al. [44] propose a method that produces acompletebut notprecise
set of test cases. A complete set of test cases contains only the test cases that
should be used for re-validating the inherited functionality from the previous
version of the program. Precise sets of test cases do not include test cases
where the previous version and the new version produce the same output. They
discuss the cost of to being too ambitious in the effort to geta complete and
precise subset of regression tests. Their proposed method concentrate on the
flexibility of the test selection.

2.2 Analysis of Computer Software Execution Be-
havior

Analysis of programs are based on the test data adequacy criteria; specification-
based and implementation-based criteria. For sequential programs, the test
coverage can be determined by analyzing the code at unit-level. By the use
of the coverage-based approach the following type of code coverage can be
achieved:

• in control-flow based testing

– all-node, all-branchandall-paths

• in data-flow based testing

– all defs coverage, all p-uses coverage, all c-uses coverage, all c-
uses/some p-uses coverage, all p-uses/some c-uses coverage, all
uses coverage, all du-paths coverage

The test coverage criteria can be used to (1) determine when we have tested
the software enough and (2) when to stop testing.

www.manaraa.com

16 Analysis of Computer Software Execution Behavior

Program A(void) Program B(void)
{ {

read x; read z;
write x; write z;

} }

Program order Possible serializations
A - B read x; write x; read z; write z;
B - A read z; write z; read x; write x;

Figure 2.1: Example of possible serializations of the execution behavior of two
sequential programs.

Because of the interleaved execution in concurrent programs and real-time
systems, the analysis is more complex than analysis of sequential programs,
and implies the use a programming constructs to synchronizethe task in order
to avoid conflicts.

A common approach to derive serializations is to staticallyanalyze the
structure of the implementation [39]. Serializations can also be derived dy-
namically by instrumentation of the exercising program [35]. However, in both
approaches the competition for shared resources and synchronizations of tasks
must be considered. Using synchronization constructs, such as, semaphore
protocols or rendezvous in ADA, can do this. There are issuesthat should be
considered when using such approach, for example, uniqueness of input, possi-
ble exposure of errors during test execution, and infeasible concurrent program
serializations [41].

For real-time systems a common cause for interleaved execution is that
the tick scheduler schedules a higher prioritized task, or using programming
constructs that put the program on hold and lets other programs run.

If synchronization constructs are used, then some of the serializations be-
come infeasible. For example, if two tasks, taskA and taskB in a concurrent
program have precedence constraints such that a read operation in taskA must
be exercised before a write operation in taskB. Then, all serializations in which
the write operation of taskB is exercised before the read operation in taskA
are invalid serializations.

Also for multi-tasking programs two consecutive executions with the same
input may have different execution behavior and even produce different out-
put [5]. Hence, making it impossible to test the program.

www.manaraa.com

Execution Behavior 17

Task A(void) Task B(void)
{ {

read x; read z;
write x; write z;

} }

Program order Possible serializations
A - B read x; write x; read z; write z;
B - A read z; write z; read x; write x;
A - B - A read x; read z; write z; write x;
B - A - B read z; read x; write x; write z;
A - B - A - B read x; read z; write x; write z;
B - A - B - A read z; read x; write z; write x;

Figure 2.2: Example of possible serializations of the execution behavior of two
tasks in a concurrent program.

2.3 Execution Behavior

What is the execution behavior of a program? It can for example be output val-
ues, signals, or the statements traversed in the executions[46]. The behavior of
a program can be based on synchronization sequences, rendezvous sequences,
and execution paths [46, 37].

Execution paths define in which order the statements in a program are tra-
versed. For sequential programs the execution path of the statements is exer-
cised in the order of the implementation and in which order the programs are
invoked, see Figure 2.1.

For concurrent programs and multi-tasking real-time systems the complex-
ity of deriving the serializations is increased. In Figure 2.2 it is shown how the
interleaving can affect the traversed execution paths.

There are two types of execution characteristics of real-time systemsmulti-
taskingandsingle-taskreal-time systems. Multi-tasking systems can further
be of two typespre-emptiveandnon pre-emptive. Single task and non pre-
emptive real-time systems have similarities with execution characteristics of
sequential programs since the task in such systems are exercised in sequence
without interruption. Multi-tasking and pre-emptive real-time systems have the
same fundamental execution characteristic as concurrent programs.

www.manaraa.com

18 Execution Behavior

A

B

Priority

Time

X= X+15

X=X*2

X=32

Figure 2.3 (a): Example 1

A

B

Priority

Time

X=X*2

X= X+15

X=17

Figure 2.3 (b): Example 2

Figure 2.3:Example of two possible execution orderings from repeated executions of
two tasksA andB accessing the shared resourceX initialized to1. In Figure 2.3 (a)
taskB precedes taskA and in Figure 2.3 (b) taskA precedes taskB

2.3.1 Synchronization

Multi-tasking programs may have requirements that restrict the order of inter-
leaving between programs; such requirements may be due to data dependencies
between programs. Without these constraintsrace situationscan occur.

A race situation is when two or more tasks are competing for limited re-
sources and it is not possible to á priori determine which of the tasks that is
going to win the competition. Example of limited resources can be CPU, I/O
ports, and shared variables. In Figure 2.3 a race situation is visualized by ex-
emplifying access to a shared resourceX by two tasks, taskA and taskB.
Initially X is assigned the value1. The two possible orderings and results of
the computations are that taskA starts to executes because of earlier release
time, folloed either by taskB preempting taskA beforeA have completed
its operation onX (see Figure 2.3 (a)) computing the result ofX = 32, or
in the case thatA perform its operation onX before taskB preemptsA (see
Figure 2.3 (b)) the produced output is thenX = 17.

2.3.2 Observability

Observability is the ability to observe the state before andafter an operation.
Consequently, it must be possible to observe the input, output and the internal
state.

Observing the input and output in sequential programs is straightforward,

www.manaraa.com

Execution Behavior 19

that is if the program does not include any non-deterministic statements [33].
The inputs are observed to determine the behavior of the program’s envi-

ronment. By observing the internal state, the exact cause ofthe failure can
be located, and internal state changes that have no effect onthe output can
be detected. The internal states of sequential programs areobserved using in-
teractive debuggers or printouts in the code. One of the problems of using
interactive debuggers and auxiliary output to observe real-time systems is that
the temporal behavior are changed during the observation [36], i.e., even if we
can stop the program and observe the state, the time cannot bestopped in the
environment.

Observations can be done in different ways; visually by looking at the
screen or printouts, or by using instrumentation. We assumehere that all ob-
servations are achieved by instrumentation.

There are three approaches for monitoring the state of software: hardware
based, software based and a combination of hardware and software. Observa-
tions achieved by inserting monitoring probes into the codeand then removing
the probes during normal operation could affect the behavior of the execution.
This phenomenon is called the “probe effect” [9].

In [33] three techniques to handle the probe effect are discussed, the probe
effect can be ignored, minimized or avoided. When observingconcurrent pro-
grams and real-time systems we must avoid the probe effect, that is the software
used for monitoring must remain in the application or non-intrusive hardware
must be used. Another problem that occur when using monitorsin real-time
systems is that temporal delays are introduced leading to longer response times.

Yann-Hang et al. [20] propose a tool suite for testing real-time ADA ap-
plications. The tool suite includes an instrumentation tool implemented as an
ADA run-time library. Output generated from the analysis and the instrumenta-
tion are flow graphs and trace files that are used to determine the code coverage
criteria of the ADA-program. The analysis tool can handle different kinds of
coverage criteria, e.g., basic blocks coverage, c-use coverage, and p-use cov-
erage. However, in their paper the proposed test analysis donot consider the
temporal behavior of the application.

2.3.3 Determinism

Executions of sequential programs are repeatable and deterministic. That is,
for an input we get the same output regardless of how many times we run the
program with that input. This is true if the program does not include any state-
ments that depend on the temporal behavior and/or random behavior. Examples

www.manaraa.com

20 Execution Behavior

of such statements are random statements or dependencies ofa clock readings
in sequential programs [32].

In concurrent programs, each task is executed independently and therefore
it is often impossible to determine which execution path theprogram follows
each time we run the program. That is, for a unique input we canget different
output for several consecutive runs.

Sang et al. [6] achieve deterministic testing by controlling in which order
the programs synchronize for accesses to shared resources.In this case, in addi-
tion to the input to the program a synchronization sequence that is derived from
the specification must be added. Between the forced synchronization points the
programs run nondeterministically, and the nondeterministic execution is then
used to check for nondeterminacy conformance between the specification and
the implementation. Running the program nondeterministically tests behav-
ioral conformance, and during each execution of the programthe synchroniza-
tion sequences are logged. The logged synchronization sequences are then an-
alyzed to see if the behavioral conformance is satisfied. Sang et al. emphasize
that in nondeterministic execution not only valid synchronization sequences
are executed but also invalid synchronization sequences.

2.3.4 Controllability

Controllability is the ability to force the program into a desired state. For se-
quential programs it is sufficient to give the input to the program and set a
break-point at the desired program statement to achieve controllability. For
multi-tasking programs controllability is achieved at a coarser scale than for
sequential programs. Here synchronization sequences are derived by statically
analyzing the concurrent program and then forcing the program to traverse the
same trajectory as the derived synchronization sequence.

2.3.5 Reproducibility

Reproducibility – test repeatability – is the ability to reproduce a previous ex-
ecution of a program. In other words, for a given input the system always
computes the same output in repeated runs of the system [26].

After errors have been corrected the tester wants to assure that the error
have been removed and that no new errors have been introduced. Therefore it
is necessary to test the system repeatedly. During repeatedtest runs with the
same test cases, the same outputs must be observed in order todetermine if the
software is correct [26]. If test executions are not reproducible re-testing cannot

www.manaraa.com

Execution Behavior 21

determine that corrections have removed the errors. For concurrent programs
and real-time systems, in whichraceshave impact on the execution path, the
program is not usually reproducible.

To reproduce the exact execution behavior of a sequential program it is suf-
ficient to run the program repeatedly with the same input. In order to reproduce
the execution behavior of multi-tasking programs it is not sufficient to repeat-
edly feed the same input to guarantee the same output. This isbecause of the
race situations that can occur when programs concurrently accesses shared re-
sources. For real-time systems it is not sufficient to consider only the ordering
of the accesses, in addition the time at which the access occurred must also be
considered [33]. Other causes for making RTS non-reproducible can be non-
determinism in hardware, communication protocols, network traffics, etc. [25],
and reading of real-time and random numbers [33].

There are two approaches to reproducibility (or test repeatability): the lan-
guage basedand theimplementation basedapproaches.

The language based approach transforms a program into a new program
that includes program constructs that constrains the execution in order to force
the control of the execution. Carver et al. [5] propose a toolfor transformation
of concurrent programs. Based on the language used and what synchronization
constructs that are available in the language, e.g., ADA-rendezvous or moni-
tors, the tool creates a new program that forces the execution to follow a derived
synchronization sequence of the concurrent program.

The implementation based approach requires an event history. The behav-
ior of a program is logged during run-time in a history log. The information
in the history log is then used to reproduce the behavior of the execution. In
Thane [36] an implementation based method for creating a history log and
reproducing the behavior of real-time systems by deterministic replay is intro-
duced.

2.3.6 Testability

The IEEE standard [26] defines testability as the ability to create test cases
that satisfies the test criteria. An extended definition thatnot only includes
the metrics of creating test cases but also consider the probability of revealing
a failure during testing is proposed by Voas et al. [40]. Theyalso propose
approaches for analyzing the software to measure the testability. One important
issue is to determine the parts of the code that are most likely to hide faults.
This analysis is based oninformation lossin the data;explicit and implicit
information loss.

www.manaraa.com

22 Testing of Sequential Programs

Explicit information loss is when computations of data are not observed
during test execution. Hence, explicit information loss can only be found by
static analysis of the implementation. This makes analysisto be performed pos-
sible only late in the development, since the implementation must have been
completed. The most frequent cause of explicit informationloss is the hid-
ing of internal information. However, information hiding is often used in well
structured programming approaches to prevent unintended tampering with in-
ternal data of software modules. Explicit information lossis a design issue and
can be solved by designing the software not to hide internal information.

Implicit information loss is when different data are fed as input but when
the same data is presented as result. There exists a correlation between the
cardinality of the input and cardinality of the output, called domain/range ra-
tio (DRR). If software has high DRR it is considered to have low testability.
Solutions to reduce implicit information loss include isolating implicit infor-
mation loss using specification decomposition, minimizingvariable reuse and
increasing the number of out parameters. The benefit of analysis for implicit
information loss is that it can be performed early in the development. Based
on the above assumption Voas et al. propose an analysis method that measures
the probability of software failure [40].

Testability analysis and testing complements each other inthat the testabil-
ity analysis can give guidance on where in the code testing efforts should be
spent.

2.4 Testing of Sequential Programs

In most software projects the testing phase often stands forup to 50% of the
development cost. Mainly because the testing process ofteninvolves man-
ual tasks, and that expensive test equipment often is neededand that these
resources are limited and shared between testers. Other causes that increase
the cost of testing are: the difficulty to create test cases, ahuge number of test
cases, the need for re-tests, the time to execute each test case, etc.

Testing of computer software can be divided into four phasesmodeling the
software’s environment, selecting test scenarios, running and evaluating test
scenariosand measuring test progress[43]. The test execution can further
be divided into three sub-phasesunit testing, integration testingand system
testing.

www.manaraa.com

Testing of Sequential Programs 23

2.4.1 Unit Testing

A unit can be a function, a collection of functions, a task, a collection of tasks,
etc. Rarely a unit is a whole program unless the program is very small.

Unit testing is often performed by the programmer. The programmer com-
piles the unit on the development platform and feeds the input manually or by
a test program. However, this technique cannot reveal failures that may occur
during execution in the program’s real envronment.

There have been several structural testing methods proposed such as state-
ment coverage, branch coverage and path coverage. To determine paths and
coverage, often a control-flow graph that represents the structure is used [48].

Functional testing techniques aims to test that the output from the function
correlates to the given input and is correct with respect to the requirements.
The functional test also aims to assure that the interface offunctions is correct
and is properly used. There are several approaches for generation of inputs for
unit tests, for exampleboundary value tests, random testsor statistical tests.

2.4.2 Integration Testing

Integration testing is the phase when the units are integrated with each other
and tested. Approaches for integration testing areincremental, top down, bot-
tom upor thebig-bangapproach. Incremental integration testing is to stepwise
integrate the program unit for unit. Top down integration testing is to integrate
the program by starting with the main unit and then integratethe units as they
are called from the units above in the hierarchy. Bottom up approach is the
opposite to top down approach, the ingration is started fromthe units that is
in the lowest level of the call hierarchy. In both the top downand the bottom
up approach it can be neccessary to use stubs, dummy units, for those units,
which are not yet subject for testing. The big bang apprach for integration test-
ing means that all units functionality are implemented and then all units are
intgrated at the same time.

2.4.3 System Testing

When integration testing have been performed, system testing is performed in
the programs real environment, with realistic scenarios ofinputs, outputs and
the load of the system.

Despite that there exists several phases the different types of testing are not
isolated activities; testing is an iterative process. For example, system testing

www.manaraa.com

24 Testing of Sequential Programs

can be done several times in a project because we have subsystems that will be
put together into the final system, and during maintenance faults are corrected
and new functionality are added or removed.

www.manaraa.com

Chapter 3

Regression Testing

Regression testing strategies can be of two types. Either software can be re-
tested with all test cases (re-test all) or with a subset of the test cases (selective
regression test). Selective regression testing can be to select enough testcases
to reveal all failures, minimal number of test cases or select test cases that only
traverse the modified paths of a program. Retesting a software with a sub-
set of test cases can reduce the cost of testing the software,and is therefore
the most common approach in academic papers. Onoma et al. [27] discuss
approaches for regression test selection. In their paper a framework is pre-
sented, the multilevel regression testing framework, thatdevelopers can use
for regression testing during development and maintenance. They emphasize
the difference between the academic and industrial view of what is important
issues in regression testing:

“While researchers are mostly concerned with reducing the
number of test cases for re-testing, there are other important issues
in using regression testing in an industrial environment.” [27]

One issue is that although the re-test all strategy is costlyand time consum-
ing, it is not always desirable to find a subset of test cases. Especially for
those companies that must use retest-all method because of certain constraints
such as safety-critical programs, etc [27]. Examples of other issues can be the
use of tools for automation when regression testing are usedextensively and
frequently. A drawback of regression testing is that the suite of test cases in-
creases when the software is maintained and this makes testing even more time
consuming.

www.manaraa.com

26 CHAPTER 3. REGRESSION TESTING

Leung et al. [22] have identified two types of regression testing corrective
andprogressive. Progressive regression testing is caused by modification of
both code and specification, whereas corrective regressiontesting only com-
prise code modification.

When using regression testing selection techniques the basic concept is to
test only the modified parts of the program, but this can lead to undisclosed
failures since not all test cases that possibly reveals failures are re-executed.
There have been extensive research on regression testing techniques and most
of them address the regression selection problem [1, 12, 13,29, 31, 42, 44].
Many of the algorithms aim to select test cases were the new and the old version
of the program differs in output. Others are concentrated toachieve certain
degree of coverage. Wong et al. [44] propose a technique thatuse both of these
approaches. The proposed approach is based on two techniques: minimization
andtest case prioritization.

A definition of regression testing problems is found in Rothermel et al. [30].
They define four problems and describe how to proceed when exercise regres-
sion testing: LetP be a procedure or program, letP ′ be a modified version of
P and letT be a test suit forP . A typical regression test proceeds as follows:

1. SelectT ′ ⊆ T , a set of test cases to execute onP .

2. TestP ′ with T ′, establishingP ′’s correctness with respect toT ′.

3. If necessary, createT ′′, a set of new functional or structural test cases
for P ′.

4. TestP ′ with T ′′, establishingP ′’s correctness with respect toT ′′.

5. CreateT ′′′, a new test suit and test history forP ′, fromT ′, T ′′, andT ′′′.

The first step is the regression test selection problem. Execution of test cases
are addressed in steps 2 and 4. In step 3 the problem of how to select test
case to get enough coverage is defined. While step 5 address the problem of
maintenance of a test suit.

Leung et al. [22] divides the regression testing problem into two subprob-
lems: the test selection problem (1) and the test plan updateproblem (2). In
selection of test cases to test a modified program, select test cases from an ex-
isting test plan, and create new test cases based on made modifications. For
(2), see Section 2.1.3, where the update problem is included.

Most of the existing regression test techniques are using structural based
test cases (white box testing). This because most of them compare the structure

www.manaraa.com

General Regression Test Assumptions 27

of the old program with the new program, and then the tester tries to get the
same coverage percentage as the previous test.

According to Kim et al. [15] most regression testing techniques concen-
trate on the test selection problem, ignoring other important issues of regres-
sion testing. Equal important to the selection problem is the issue of what
triggers the regression testing event. Should tests be executed periodically or
at some pre-determined instance, for example, after all changes, after modifi-
cation of critical components, or during final testing. The hypothesis for their
work is based on the fact that the amount of changes between regression testing
sessions affect the cost effectiveness, since the test suitgrows for each modifi-
cation leading to that more test cases are selected in every session. The impact
of this is that the effort to select failure revealing test cases also increase and
makes selection algorithms less cost effective.

3.1 General Regression Test Assumptions

Many regression testing strategies assume that the programis sequential; re-
gression testing is performed at unit level, and there exists a well designed
specification, well designed test plan, and control- and/ordata-flow graph with
a single entry and exit point. Leung et al. [22] discuss assumptions regarding
characteristic of programs such as:

• the program is single entry and single exit

• the program is not too simple

• the program is not too complex

Functions can easily be adapted to the first assumption by inserting a start and
end node in a control-flow graph. White et al. [42] propose a method where
the control-flow is modeled as a call graph, and here the single entry and exit
assumption is not an issue since a call graph is represented as a tree and the
call chain starts and ends in the root node of the tree.

The second and third assumptions are more difficult to overcome. Here are
cost/benefit trade-offs important and should be considered. If the program is
too simple then the set of test cases may be small and the cost for selecting test
cases is more than re-execute all the tests.

Leung [21] have examined the fundamentals of selective regression testing
when divided into two strategies:selective regression unit testingandselective
regression function testing. Where function testing addresses integration and

www.manaraa.com

28 Regression Test Techniques

system test. Unit testing refers to strategies where structural coverage criteria
must be met. For unit testing Leung discussproper scope assumptions. The
approach is to choose a scope such as that all faults in a modified program are
revealed. This can however lead to unnecessary testing if the scope is large.
They claim the problem is to design a selective regression unit testing strategy
to minimize the scope and code to re-test.

3.1.1 Cost Models

Onoma et al. [27] talk about costs in regression testing, butthey only consider
the cost of the testers and not the cost of machine time. The cost is approxi-
mated by the time spent ondeveloping test cases, re-validating, execution of
the test suit, comparing the results, andfault identification. They emphasize
that if the cost for analyzing which test cases to select for asubset of the previ-
ous set of test cases exceeds the cost of running the unselected test cases, then
the retest-all method is more cost-effective than a selection technique.

Leung et al. [23] discuss a cost model that compares regression testing
strategies, and in particular selective regression test strategies. The cost can be
of two types:direct and indirect. Direct costs are the cost for resources used
during test, such as test analyst´s time and equipment for executing the test.
Indirect costs are the cost for development of tools, management and database
storage. The model takes into accountsystem analysis cost, test selection cost,
test execution costandresult analysis cost.

3.2 Regression Test Techniques

There exists numerous regression test selection techniques [15, 30], for exam-
ple:

• retest-alltechniques

• random/ad-hooktechniques

• minimizationtechniques

• safetechniques

• data-flow/coveragetechniques

• prioritization techniques

www.manaraa.com

Regression Test Techniques 29

In the retest-all method, as the name indicates, all the previous test cases
are used in the regression test phase. This can however be acceptable if the
program is small; the number of re-tests is small. For largersoftware projects
and where regression testing is used frequently rerun of alltest cases is not
acceptable. If we have to consider the cost of running test cases or the amount
of test cases is too large we can use a regression test selection techniques that
select a subset of the previous set of test cases.

By randomly selecting a subset of test cases there are no guarantees that
those test cases that need to be rerun are in the subset. Testers with á priori
knowledge of the system can see to that if some test cases are missing these
test cases can be added to the test suit.

In minimization techniques the goal is to select a minimal subset of test
cases, where each test case corresponds to the impact of the modification in the
program. The method selects at least one test case that execute every modified
or added statement.

Safe techniques selects test cases necessary to reveal all faults in the mod-
ified program. This can lead to that in some cases the retest-all and safe tech-
niques selects the same set of test cases. According to Kim etal., on average
the safe method selects 68% of the test cases [15]. If the safemethod selects
all test cases, then it is less effective than the retest-alltechnique since in safe
method an analysis is done to determine what modifications have been made.
By using regression testing techniques that selectpotentially revealing test[29]
no á priori knowledge is needed as in techniques that concentrate less on cov-
erage criteria. Rothermel et al. [29] assumes that four criteria must hold for
their algorithm to select a safe subset of test cases:safety, precision, efficiency
andgenerality.

Coverage techniques aim to select only those test cases thattraverse paths
were the program have been changed. The coverage can lead to that some test
cases are not selected, although they should have because they traverse possibly
affected parts of the program.

With a prioritization technique, test cases can be exercised in such an or-
der that those test cases that reveal failures early in the testing process or get
confidence and coverage criteria increased at a faster rate [31] are re-executed
first. It depends on the application what should be concernedwhen choosing
prioritization criteria. Wong et al. [44] propose that testcases are prioritized
by cost per additional coverage to reveal failures early.

www.manaraa.com

30 Algorithms for Regression Test Selection

3.3 Algorithms for Regression Test Selection

• Slicing Algorithm

• Incremental Algorithm

• Firewall Algorithm (Adapted firewall Algorithm/Firewall at Integration
Algorithm)

3.3.1 Slicing Algorithm

Gupta et al. [13] propose a selective regression testing technique using a data
flow based slicing algorithm that satisfies theall-usestest criteria. By using a
slicing algorithm the authors aims to remove the need of maintenance of a test
suit. The test suit can be omitted since alldef-use pairsare explicitly detected.
A def-use pair is a pair of a definition and the use of the variable. Since the
def-use pairs must be computed there is a need for data flow information. This
information can be represented by nodes in a control flow graph. A def-use pair
can be eithercomputation uses(C-uses) orpredicate uses(P-uses). C-uses that
occurs in computation statements and P-uses in conditionalstatements.

Def-use pairs affected by program changes can be divided into two cate-
gories:

• Directly affected

• Indirectly affected

Directly affected def-use pairs are program changes due to insertion or
deletion of variable uses and definitions. For example, if a statement is changed
from V ar = 1 to V ar = 1 + V arZ then new def-use pairs must be created
and the use ofV arZ must be tested.

Indirectly affected def-use pairs can be of two types:

(I) A program is edited, for exampleV ar = 1 is changed toV ar = − 1,
and no new def-use pairs are created but the change affects the value for
computation in a def-use pair. The def-use pairs that use this new value
must be re-tested.

(II) A def-use pair that test a condition path and is affectedby a program
change, for example ifV ar < 0 is changed toV ar > 0, then the
def-use pairs must be re-tested.

www.manaraa.com

Algorithms for Regression Test Selection 31

To identify all def-use pairs that are affected by program changes the au-
thors use a slicing algorithm. The program must be modeled asa control flow
graph (CFG) where each node represent a program statement and each edge
represent a path between two statements. Abackwardand forward walk al-
gorithm are applied on the CFG, these algorithms identifies all def-use pairs.
Backward walk algorithm identifies definitions of variablesby traversing the
CFG in a backward direction from the use of the variables until it have found
all definitions and their corresponding paths.

3.3.2 Incremental Regression Testing

As most regression testing algorithms, the incremental regression testing algo-
rithm proposed by Agrawal et al. [1] assumes that the programcan be repre-
sented as a control-flow graph (CFG) extended with information of the data-
flow. The algorithms is built on a simple model of changes:

(1) to fix faults.

(2) the specification is changed.

In (1) all test cases that produce an incorrect output in the previous test must
be rerun to verify that the output after the changes is correct. In (2) all test-cases
that are considered to be incorrect according to the changedspecification must
be rerun even if they produced a correct output in the previous test.

The authors propose three methods for incremental regression testing:

• The execution slice technique.

• The dynamic slice technique.

• The relevant slice technique.

The methods are based on four observations, and these observations have
been verified through experiments that reveal how many statements that are
executed under each test case.

The methods can be applied on changes that hold for the following assump-
tions:

• No changes are made to the CFG.

• No changes are made to the left-hand-side of an assignment.

www.manaraa.com

32 Algorithms for Regression Test Selection

The execution slice technique strategy is to off-line determine the set of
statements executed under each test case. Then, when retesting the program,
only those test cases with sets of statements containing a modified statement
need to be rerun. The execution slice technique can also be used to test a pro-
gram at unit and function level. This makes it suitable even for larger software
projects or when the test strategy is black-box testing. This is done by not con-
sidering which statement that are executed, instead the method can determine
which module that are executed under a test case.

In some cases a modification to a statement leads to that all test cases are se-
lected. This happens when for example the predicate of a conditional statement
is changed but the conditional block does not affect the output. The problem
of selecting all test cases in some cases are solved by using adynamic program
slice technique. The method determines in which test cases the modified state-
ment affects the output. However the method can not determine what type of
modification that is made. The problem with this is that if thechanges intro-
duces new faults then the faulty change is not detected sincerelevant test cases
are not rerun.

The proposed solution identifies potential dependencies ofvariables in an
execution history. The relevant slice technique determines potential depen-
dencies of a variable if in a path of the execution history no definitions of the
variable can be found between a predicate and the use of the variable, and there
exist a definition of the variable in another path. Both pathsstart in the predi-
cate and end in the computation that use the potentially dependent variable.

The authors give an example when the relevant slicing technique have de-
ficiencies. This can happen when a use of a variable is controldependent of a
previous predicate. This can lead to unnecessary rerun of test cases. They solve
this by excluding the statements that have control dependencies to a predicate
that may affect the output from the set of statements.

3.3.3 Firewall concept for Regression Testing

As the previous methods thefirewall concept proposed by White et al. [42]
requires a model of control-flow which is modeled as a call graph (CG). The
CG shows the control-flow at module level. There are three basic assumption
for the firewall approach. All module dependencies must be modeled in the
CG, there are no other errors than those caused by the modifiedmodules, and
the unit and integration test must be reliable.

The firewall is a boundary such as that the firewall comprise the functions
that need to be modified. The main idea is to aim for that after amodification

www.manaraa.com

Algorithms for Regression Test Selection 33

the number of modules inside the firewall is not increased.
Besides the CG there must also exist a module/test matrix that dynamically

obtain which modules that each test case tests. The matrix also includes which
modules that calls a module. These calls are mapped to the call graph. A
firewall is applied to the call graph and contains the set of modified modules
that need to be re-tested. Then a subset is selected from the set of test cases
bounded by the fire-wall and determined by the module/test matrix.

Even though the paper aims at integration regression testing the authors
discuss the importance of using regression testing in all phases of a program’s
life-cycle, and that the sooner a regression error is found the less are the testing
costs. Since the dependencies are computed from a call graphthere is no infor-
mation about the internal structure of the modules. In otherwords, the method
is a black-box regression testing strategy.

www.manaraa.com

34 Algorithms for Regression Test Selection

www.manaraa.com

Chapter 4

Testing of Concurrent
Programs

Race situations and nondeterministic execution behavior increase the complex-
ity of concurrent programs. This leads to two major problemswhen testing
concurrent or multi-tasking programs: the ability to observe and control the
execution of concurrent programs.

4.1 Methods

In Carver et al. [5] the authors propose a method that by synchronization con-
structs force an execution to follow a derived synchronization sequence. What
synchronization constructs to choose is determined by the programming lan-
guage. Examples of such synchronization construct can be semaphores, mon-
itors, or rendezvous in the programming language ADA. The method is called
deterministic execution testing. During an execution, information of the syn-
chronization sequence is logged and when the implementation is re-tested not
only the input is feed to the program but also the previous logged synchroniza-
tion sequence. The program is forced to exercise the synchronization sequence.
This is done by constructing a new version of the original program. The new
program is constructed by a tool that add synchronization constructs, supported
by the language that is used, that guarantees that the program follows the de-
rived synchronization sequence.

During the program execution of the guaranteed synchronization sequence

www.manaraa.com

36 Methods

debugging information can be logged at re-execution of the program. The de-
bugging information can then be used to assure that the errorhave been cor-
rected. To make sure that the correction have not introducednew bugs not only
the test that revealed the error must be re-executed, also previous test must be
re-executed.

Sang Chung et al. [6] propose a method that use synchronization sequences
derived from message sequence charts. However, in both Carver et al. and Sang
Chung et al. they focus on concurrent program testing and do not consider the
temporal behavior of the program. Sang Chung et al. [6] use logic clocks [18]
to determine the order of the messages. Logic clocks can be used as long as we
do not have to consider at which time an event have happen, which is the case
of software in real-time systems.

To achieve testing of real-time systems we also need to consider at which
time events occur. Then logical clocks cannot be used since it cannot be deter-
mined when an event occur only in which order the occur.

In Yang et al. [46] the authors propose a test method for testing of concur-
rent programs. In the paper a model of the execution behaviorconsist of the
input value (α), the produced execution path (δ or C-path), and a rendevouze
path (σ or C-route). The basic idea in their paper is to find unique pairs of in-
put and rendevouze path (α, σ) and determine which execution path the unique
pair can be correlated to. By adding the C-route to the input the uniqueness of
each produced C-path is guaranteed. In other words for each repeated test run
with the same input that traverse the same C-path must also traverse the same
C-route. Not all C-route are feasible. There can be dependencies between tasks
that makes some C-paths infeasible, for example, rendevouzpaths that lead to
deadlocks.

The test method proposed in the paper is performed in six different steps
that involves static analysis of each individual task on order to find C-paths
and C-routes. When the analysis and selection of test cases,(α, σ) is done the
test execution is performed in two stages first a nondeterministic test execution
with only α from the test case. Second stage is a controlled test execution in
which the execution is forced. The second stage, forced execution ofσ, can be
used to determine feasible C-routes since the forced execution of an infeasible
C-route will lead to a failure of the execution for example, deadlocks.

www.manaraa.com

Chapter 5

Testing of Real-Time Systems

Real-time systems are software and hardware that in cooperation with their
environment, and based on inputs from the environment, produce and deliver
results within specified time intervals. The time intervalsare determined by the
temporal constraints derived from the temporal propertiesof the environment.
Because of the temporal constraints on the interaction between the real-time
system and its environment the date of the data (inputs and outputs) is impor-
tant [33]. Below is a definition of a real-time system:

“A real-time system is a system whose correctness depends not
only on the logical result(s) of a computation, but also on the time
at which the result(s) are produced” [33].

There is a widespread range of programs that apply to the definition of
real-time systems, ranging from video and audio streaming over Ethernet to
pacemakers. To make distinction between different types ofreal-time systems
they are categorized into two major types based on their criticality hard real-
time systemsandsoft real-time systems:

Hard Real-Time Systems are systems in which a failure or violation of tem-
poral constraints often leads to unacceptable consequences such as huge
financial losses or human injuries.

Soft Real-Time Systems are systems in which it can be acceptable to allow
occasional violations of temporal constraints. However, there may be
constraints on how many violations that are allowed and the frequency
of the violations.

www.manaraa.com

38 Testing of Real-Time Systems

Each type of system can further be grouped into the followingsubgroups
based on the underlying execution model in the system and theinvocations of
the tasks;event triggeredandtime triggeredreal-time systems:

Event Triggered Real-Time Systems are systems that are driven by external
and/or internal events. Examples of events are signals, message passing,
internal interrupts (i.e. software interrupts), externalinterrupts. In other
words, the run-time environment allow instances of tasks tobe invoked
at arbitrary points in time so the granularity of the releasetimes is in the
domain of continuous time.

Time Triggered Real-Time Systems are systems that are driven by a timer that
periodically starts a scheduler that invokes instances of atask. That
is, the run-time environment only allows tasks to be invokedat pre-
determined points in time. Each instance of a task is therefore released
at discrete points in time.

5.1 Distributed Real-Time System

Distributed real-time systems are systems where computations are performed at
self-contained computers (nodes) that are interconnectedby a network. Com-
munication between the nodes is achieved by messages passing and the pro-
cesses can use synchronization to maintain a precedence relation or mutual ex-
clusion between processes on different nodes. Processes onthe same node also
use the communication service. A designer of real-time system often chose dis-
tributed solutions because of increasing complexity and safety requirements. A
distributed solution makes it possible to achieve greater reliability through re-
dundancy. Also the inherited distribution of the system, for example, control
systems on a factory floor can be a cause to chose a distributedsolution [33].

5.2 Testing of Real-Time Systems

Hassan Gomaa [11] propose a software development approach for real-time
systems that incorporates tools for automated testing of real-time systems. The
development approach and the tools have been evaluated in a case-study in
the development of a robot controller. The development approach is based
on the software design method DARTS (Design Approach for Real-Time Sys-
tems) [10]. The design of a real-time system is to decompose the system into

www.manaraa.com

Testing of Real-Time Systems 39

task and defining the tasks’ interfaces according to the requirements in the
specification. Thus, it is important to formally review the design specifications
and to verify that the task decomposition conforms to the specification. After
a detailed design specification has been accomplished the functionality of the
tasks are implemented.

The functional requirements are described bydata-flow diagramsfor each
task, this can be done since each task alone is a sequential program. The syn-
chronization of tasks is assumed to be solved by using events. The receiver
of the event blocks itself in order to wait for a wake-up signal. The control
flow of the events is described in anevent sequence diagram, based on a task
structure chart, which makes it possible to define the flow in more detail and
finer grained than the data-flow diagram. Since the input and output events are
described in the event sequence diagram it is possible to derive test cases for
the integration test phase. But before starting integration testing each task is
functionally tested on the host computer.

The unit testing and the initial functional integration testing are exercised
on the host computer. The reason for this is that there are often more and better
tools on the host computer than for the target system. Also, it is much more
efficient to test on the host computer than on the target platform because testing
can be more easily automated on the host.

For system testing and the initial temporal integration testing, the synchro-
nization of tasks are tested by creating a skeleton of the main module of the
task. This skeleton consists of the synchronization constructs. Testing can then
be performed by using a stub that sends signals to wake up the task that is wait-
ing for the signal. After the synchronization parts are tested more functionality
can be added to the skeleton and be tested. Automated testingof real-time sys-
tem on the host computer can only test for logical correctness. It cannot test
for temporal behavior.

After integration testing on the host the real-time system is tested on the tar-
get platform. Preferably this is done in a incremental bottom up approach. This
is because of the more low level functionality implemented the less drivers and
environment simulators must be implemented. The automation of the system
testing assumes that there exists a secondary storage for storing of test results.
Preferably, the target is tested with an environment simulator that are feeding
inputs and receiving and time-stamping outputs from the system. The testing
can be controlled by test scripts from an external computer that is running the
environment simulator.

In order for the host/target testing approach to work the development tools
used (e.g. compilers) must support both the host and the target platform.

www.manaraa.com

40 Testing of Real-Time Systems

Koehnemann et al. [16] observed that testing (and debugging) are limited
by the constraints of the software in real-time systems. Example of such con-
straints are concurrent designs, real-time constraints and embedded target en-
vironment. They also discuss increased complexity of concurrent and real-time
software that leads to increased complexity of the testing.

Test execution of real-time systems (that often also are embedded systems)
can be divided into four phases:

1. Unit Testing

2. Integration Testing

3. System Testing

4. Hardware/Software Integration Testing

in which the three first phases are similar to the phases of test execution of
sequential programs. The fourth step is the testing of correctness of the con-
trol of devices attached to the system, i.e. the environmentwhich the real-time
system are controlling. In practice, the test execution in each phase is often per-
formed in two steps [33]. The first step consists of executionof the application
while recording the behavior. Then in the second step, the recorded behavior
is analyzed.

5.2.1 Testing for Functional Correctness

Thane et al. [37] is addressing the problem of testing distributed real-time sys-
tems in a deterministic way. The difference in testing sequential programs and
concurrent programs is that for the same sequence of inputs different output
can be produced by the concurrent program. Therefore, sequential testing tech-
niques cannot be used to test concurrent programs and real-time systems. The
authors propose a approach for testing of distributed real-time systems using
sequential test tools.

The test approach is divided into three iterative steps:

1. identify the set of possible execution orderings (serializations),

2. test the system using any test technique of choice,

3. map each test case and output onto the correct execution ordering, based
on observation and

4. repeat 1-3 until required coverage is achieved.

www.manaraa.com

Testing of Real-Time Systems 41

In the first step a static off-line analysis of the software isperformed. This
is done by using a analysis tool that derives all possible execution orderings
and creates aExecution Order Graph(EOG). The EOG is a output from a sim-
ulation of the behavior of a preemptive scheduling policy [2, 24, 45]. More
exactly the graph is showing the non-deterministically behavior in the execu-
tion of the real-time software. The analysis tool assumes that execution time,
priority and release time are known. Release times and the priorities of the
tasks are determined at design time. However, execution times of tasks cannot
be easily determined neither at design or when specificationis realized in a
implementation.

The second step are the exercise of test case on the target by using appro-
priate testing techniques. During the run of test cases the execution behavior,
i.e. the control flow of a particular test run, are monitored and saved in a log.
Since the test approach do not consider the the no-deterministic behavior until
later steps testing tools for test of sequential programs can be used in this step.

In the next step the analyzed and observed execution behavior are com-
pared. If a test case and corresponding execution behavior can be mapped onto
a branch in the EOG the mapping are noted and the steps are repeated until
coverage criteria are fulfilled. The coverage criteria are of two types the first is
how many times each branch have been observed during the testruns and the
second how many of the unique branches have been observed.

The deterministic approach in testing of distributed real-time systems is
achieved in step 3. The definition of determinism are; for each test case during
repeated test runs the same output is observed. By in addition to the test case
also observe the execution behavior as output determinism is achieved in step 3
when mapping the output onto the EOG.

In distributed systems during the exercise of the test caseson each node
the control flow are saved in a log. The difference between testing of a single
node system and a distributed system is that on each node the local clock must
be synchronized with other local clocks on other nodes and the increase of
complexity when analysis in step 1 is performed.

5.2.2 Testing for Temporal Correctness

Tsai et al. [38] provides methods for dynamic analysis of correctness of tempo-
ral constraints of real-time software. The approach is based on a non-intrusive
monitoring technique that record run-time information. The run-time informa-
tion is then used to analyze the software for violations of temporal constraints.
From the run-time information graphs are constructed for analysis of tempo-

www.manaraa.com

42 Testing of Real-Time Systems

ral constraints. The graphs created areTimed Process Interaction Graphand
Dedicated Timed Process Interaction Graph.

In Khoumsi [14] the author propose a method to test the temporal con-
straints of the output from distributed real-time systems.The method consists
of three phases how to specify a distributed real-time system, a distributed test
architecture and a procedure for distributing test sequences.

The method assumes that the distributed real-time system ismodeled as a
n-port Timed Automata. Based on this model the temporal constraints are de-
rived and transformed into global test sequences that are distributed totesters.
Testers are independent nodes that feed the system with inputs at the appropri-
ate instance of time and receive output for analysis of the temporal correctness.

To verify the order and timing of the inputs and outputs each tester have an
assigned local clock that can be asked for the time and the local clock can be
used as an alarm for the timing of the input.

This method test the timing and order of the output from the distributed
real-time system. This is an important aspect of a real-timesystem since the
correctness of such system depends on at which time the result is produced.
However, the author do not discuss the problem of having clocks on different
sites in a distributed system. The drift of clocks is a problem for the global
view of what the time it is. It is not mentioned how the clock drift effect the
analysis of the timing of the outputs.

5.2.3 Test Strategies

Test strategies are descriptions on how to set-up the system, perform the test
execution and analyze the result of the test execution of a test case.

Schütz [32, 34] have proposed a test strategy for testing of distributed real-
time systems, designed for the MARS architecture. The test strategy consists
of five different test phases

• Task Test,

• Cluster Test,

• Interface Test,

• System Testand

• Field Test.

www.manaraa.com

Testing of Real-Time Systems 43

Task Test are functional testing and preliminary interface testing,per-
formed on the individual tasks. Task test are performed entirely on the host
system. This demands that the task programmer are supplied with appropriate
programming tool set.

Cluster Test are performed on the target system. The author propose two
types of Cluster Tests; open-loop Cluster Test and closed-loop Cluster Test.
Open-loop Cluster Test tests the functional correctness ofa cluster and the
temporal correctness of the interaction of task. Open-loopCluster Test is also
used when testing for loss of messages in communication between clusters. In
closed-loop Cluster Testing more realistic inputs can be fed and robustness test
can be performed since the output are dynamically analyzed and re-calculated
and can be fed back as input to the cluster and thereby close the loop. The main
difference of open-loop and closed-loop Cluster Testing isthat in closed-loop
Cluster Testing the application is run without modificationwith a environment
simulator and can therefore include test of temporal correctness. However, in
both approaches a special test system has to be build to behave as the surround-
ing system from the clusters point of view.

Interface Test are tests that peripheral devices attached to the systems In-
terface Buses behaves in an expected manner.

System Testtests the interaction between clusters and that the system as
whole behaves according to the specification.

Field Test tests the system with the real environment and real peripheral
devices. In this test phase the system is in its operational environment and can
therefore be used as customer acceptance test.

This test strategy test distributed real-time systems. However, the applica-
tion must be designed to follow the assumptions for the MARS system. Several
drawbacks are discussed in the paper and one of most important for debugging
and testing on the target is the coupling of the monitored to the high level lan-
guage used when programming. For the aspect of real-time scheduling the
off-line scheduling assumption, as in any other real-time system, reduce the
flexibility of the system but simplifies the analysis of the number of test case
needed for code coverage. Since, off-line scheduled real-time systems can be
seen as a sequential program where the execution behavior isknown a-priori.

5.2.4 Test Bed Architectures

Kopetz et al. [17] propose a architecture for running distributed fault-tolerant
real-time systems. The architecture is called Maintainable Real-Time Systems
(MARS) architecture and supports statically scheduled hard real-time systems.

www.manaraa.com

44 Regression Testing of Real-Time Systems

MARS consist of clusters that can be interconnected by an arbitrary network
topology. Tasks that have functionality relation are allocated to the same clus-
ter. There are no tools for automating the allocation of tasks to a cluster so
the designer itself is responsible for the appropriatenessof task allocations on
clusters.

Each cluster consists of a set of components that are interconnected by
a MARS-bus. A component is a self-contained computer that have identical
copies of the MARS-OS and tasks. The tasks are communicatingthrough the
MARS-bus by using MARS standardized messages. In the cluster there is
also an Interface Component that is connected to a InterfaceBus that makes it
possible to communicate with the environment (another MARScluster or the
physical process).

In Thane et al. [36] the authors presents a test architecturethat is suitable
for testing of embedded systems. The test-rig consists of the system itself, with
one ore more nodes, and a test node on which the result of the computations in
the system are analyzed. On the test node it is determined if the computations
produced the expected results or not.

5.2.5 Environment Simulators

As discussed in previous sections a real-time system is a system that interacts
with its environment. In testing of such systems there may bethe case that the
environment does not exist yet because of parallel development of hardware
and software or when the cost or safety inhibits the use of thereal hardware. In
these cases the environment must be simulated in order to enable testing of the
real-time software. A simulation is the execution of a computer program that
represents a model of a real hardware. From the simulation the behavior can
be used as stimuli to the system that is to be tested.

5.3 Regression Testing of Real-Time Systems

Zhu et al. [47] have proposed a framework for how to automate regression test-
ing of real-time software in distributed environment. Theydiscuss testing of
safety-critical real-time systems such as pacemakers and defibrillators. Test-
ing of software in pacemakers cannot be performed in its natural environment
since a failure of the pacemaker can lead to human injuries and therefore re-
quires expensive specialized hardware for testing. Thus, automating the testing
procedure is of importance for reducing the cost, using the test equipment in an

www.manaraa.com

Regression Testing of Real-Time Systems 45

efficient way and to remove the error-prone manual handling.The framework
is developed based on Onomas [27] regression testing process.

The distributed regression testing framework is built uponthree compo-
nentstest server, test stationsandtest clients. In this context components can
be general purpose computers or specially designed systems. All instances of
the three components are connected to a local area network for efficiency and
high utilization of the test stations. The test server serves as an oracle and have
access to the test database. When a test is to be exercised thetest client first
creates test cases based on the information from test databases and the test en-
gineer. After test case creation the test clients are responsible for submitting
the test and control and monitor the exercise of the test case. The test station
are the component on which the actual test case execution is performed.

The framework is designed with an object-oriented approach. This makes it
easier, for example, for composing of complex test cases that are composition
of several test cases and using different test case selection strategies.

The framework consists of four different layersnetwork layer, support
layer, task layerand interface layer. In the network layer existing commu-
nication mechanisms provided by the operating system are used. The support
layer have three responsibilities: connection for access of test database, trans-
portation of files between the three components and remote control of method
invocations. The task layer is a set of programs that performs tasks such as test
case submission, test case selection and test case execution. For easy use of the
framework for test engineers the interface layer provides visual interfaces.

Other important issues for automation and flexibility of theframework are
the test case allocation, test load balancing, test interruption and recovery, com-
posite test cases and dynamic test station configuration.

To able to perform regression testing and to be able to tell ifthe faults are
removed the real-time software must have deterministic execution behavior.
The framework proposed by Zhu et al. seems to be aimed to real-time soft-
ware that is single-tasking or non-premptive programs thatrun sequentially
and therefore have deterministic execution behavior. Unless a test method that
can handle the non-determinism in the execution behavior isused the frame-
work cannot be used for achieving regression testing of multi-tasking real-time
systems.

www.manaraa.com

46 Regression Testing of Real-Time Systems

www.manaraa.com

Chapter 6

Summary

There are many types of software and each of these software types may require
specialized tools and methods for testing. For example, testing of sequential
programs can be performed by feeding inputs to the program and then observ-
ing the output in order to tell if the behavior of the execution is correct accord-
ing to the requirements. This is because of that sequential programs have a
deterministic execution behavior. To locate the defect a debugger can be used.

Testing techniques that test the behavior of sequential computer programs
is a well established and explored area both for the industrial users and re-
searchers. However, testing of sequential programs is not atrivial task and
can only in rare cases be done with small efforts. This is because when test-
ing computer programs a large amount of test cases must be exercised (usually
manually.

To succeed in testing we need not only be concerned about the execution of
the software to reveal failures, we must also design the software so that it can
be tested with little effort. It is also important that testing is integrated with the
development of the software. This has the benefit that testing is considered at
early stages of the design of the software and that it can decrease the cost of
finding faults.

When failures are revealed the source code is corrected and the program is
re-tested. This retest is time consuming and costly becauseof:

• an analysis is performed in order to chose a subset of test cases that must
be exercised,

• for each iterative step in the regression testing new test cases are added

www.manaraa.com

48 CHAPTER 6. SUMMARY

that increases the number of test cases to run, and

• by not running test cases there is a potential risk of faults being present
in the software.

Academia is interested in reducing the test efforts by reducing the number
of test cases while industry is interested in more effectivetools and automated
testing, leading to the situation where there are numerous research results on
test case selection tools, but few on automation of retests.

Testing of concurrent programs is more complex than testingof sequen-
tial programs. The complexity is caused by the interleaved execution lead-
ing to indeterminacy of the execution behavior. That is, because of the non-
deterministic execution behavior it is impossible to establish the correctness of
the program since each input can produce different outputs.

The common approach to test concurrent programs is to derivetest cases
based on the execution behavior (synchronization sequences) when tasks are
communicating with each other. By the use of the synchronization sequences
the execution can be controlled at the synchronzation events, and hence deter-
ministic testing can be achieved.

A real-time system must be tested for both functional correctness and tem-
poral correctness. There are very few tools for testing real-time systems and
existing tools often requires special hardware or softwarearchitectures.

Regression testing of multi-tasking real-time systems is hard since it re-
quires not only control of the inputs and the state in the program but also con-
trol over the time at which events occur.

www.manaraa.com

Bibliography

[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incremental
regression testing. InProceedings of Conference on Software Mainte-
nance, pages 348–357, 1993.

[2] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Fixed priority
pre-emptive scheduling: A historical perspective. InReal-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[3] C. Bernardeschi, L. Simoncini, and A. Fantechi. Validating the design
of dependable systems. InProceedings First International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 98), pages
364–372, Apr 1998.

[4] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving test
plans from architectural descriptions. InProceedings of the 2000 Inter-
national Conference on Software Engineering, pages 220–229, 2000.

[5] R. H. Carver and K-C. Tai. Replay and testing for concurrent programs.
In IEEE Software, volume 8(2), pages 66–74, 1991.

[6] Sang Chung, Hyeon Soo Kim, Hyun Seop Bae, and Don Gil Lee Yong
Rae Kwon. Testing of concurrent programs after specification changes.
In Proceedings IEEE International Conference on Software Maintanence
(ICSM ’99), pages 199–208, 1999.

[7] S. J. Clarke and J. A. McDermid. Software fault trees and weakest pre-
conditions: A comparison and analysis, 1993.

[8] M. E. Fagan. Design and code inspections to reduce errorsin program
development. InIBM Systems Journal, volume 15(3), pages 182–211,
1976.

www.manaraa.com

50 BIBLIOGRAPHY

[9] J. Gait. A probe effect in concurrent programs. InSoftware - Practice
and Experience, volume 16(3), pages 225–233, Mars 1986.

[10] H. Gomaa. A software design method for real-time systems. Communi-
cations of the ACM, 27(9):938–949, 1984.

[11] H. Gomaa. Software development of real-time systems.Communications
of the ACM, 29(7):657–668, 1986.

[12] I. Granja and M. Jino. Techniques for regression testing: Selecting test
case sets taylored to possibly modified functionalities. InProceedings of
the Third European Conference., Software Maintenance and Reengineer-
ing, pages 2–11, 1999.

[13] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression test-
ing using slicing. InProceedings., Conference on Software Maintenance,
pages 299–308, 1992.

[14] A. Khoumsi. Testing distributed real-time systems using a distributed
architecture. InProceedings of the 2000 International Conference on
Software engineering, pages 126–135, 2000.

[15] J. M. Kim, A. Porter, and G. Rothermel. An empirical study of regres-
sion test application frequency. InProceedings of the 2000 International
Conference on Software engineering, pages 126–135, 2000.

[16] Harry Koehnemann and Timothy Lindquist. Towards target-level test-
ing and debugging tools for embedded software. InProceedings of the
conference on TRI-Ada ’93, pages 288–298. ACM Press, 1993.

[17] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The mars
approach. InIEEE Micro, volume 9(1), pages 25–40, 1989.

[18] L. Lamport. Time, clocks, and the ordering of events in adistributed
system. InCommunications of the ACM, volume 21(7), pages 558–565,
July 1978.

[19] J.C. Laprie. Dependability: Basic concepts and associated terminology.
In Dependable Computing and Fault-Tolerant System, volume 5. Springer
Verlag, 1992.

www.manaraa.com

BIBLIOGRAPHY 51

[20] Yann-Hang Lee, YoungJoon Byun, Ji Xiao, O. Goh, W. E. Wong, and
A. Lee. A toolsuite for testing analysis of real-time ada applications.
In Proceedings of 3rd IEEE Symposium on Application-Specific Systems
and Software Engineering Technology, pages 65–69, 2000.

[21] H. K. N. Leung. Selective regression testing assumptions and fault de-
tecting ability. InInformation and Software Technology, volume 37(10),
pages 531–537, 1995.

[22] H. K. N. Leung and L. White. Insights into regression testing. In Pro-
ceedings., Conference on Software Maintenance, pages 60–69, 1989.

[23] H. K. N. Leung and L. White. A cost model to compare regression test
strategies. InProceedings., Conference on Software Maintenance, pages
201–208, 1991.

[24] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. InJournal of the ACM, volume
20(1), 1973.

[25] C. E. McDowell and D. P. Helmbold. Debugging concurrentprogram.
In ACM Computing Surveys, volume 21(4), pages 593–622, December
1989.

[26] IEEE Standard Glossary of Software :Engineering Terminology. Ieee
standards collection, ieee std 610.12-1990. September 1990.

[27] A. K. Onoma, W. T. Tsai, M. Poonawala, and H. Suganuma. Regression
testing in an industrial environment. InProceedings. IEEE Transactions
on Software Engineering, volume 22(8), pages 529–551, 1996.

[28] D. L. Parnas. Tabular representation of relations. InTechnical Report,
Telecommunications Reasearch Institute of Ontario, Communicaton Re-
search Laboratory. Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario Canada L8S 4K1, CRLReport,
number 260, 1992.

[29] G. Rothermel and M. J. Harrold. A safe, efficient algorithm for regres-
sion test selection. InProceedings. IEEE International Conference on
Software Maintenance (CMS ’93), pages 358–367, 1993.

www.manaraa.com

52 BIBLIOGRAPHY

[30] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. InProceedings. Communications of the ACM, volume 41(5),
pages 81–86, 1998.

[31] G. Rothermel, R. H. Untech, and M. J. Harrold. Test case prioritization:
an empirical study. InProceedings. IEEE International Conference on
Software Maintenance (ICMS ’99), pages 179–188, 1999.

[32] W. Schütz. A test strategy for the distributed real-time system mars. In
Proceedngs of the 1990 IEEE International Conference on Computer Sys-
tems and Software Engineering, pages 20–27, 1990.

[33] W. Schütz. Fundamentals issues in testing distributedreal-time systems.
In Real-Time Systems, volume 7, pages 129–157, Boston, 1994. Kluwer
Academic Publisher.

[34] Werner Schütz. Testing a distributed real-time system– the mars ap-
proach. Research Report 11/1989, Technische Universität Wien, Insti-
tut für Technische Informatik, Treitlstr. 1-3/182-1, 1040Vienna, Austria,
1989.

[35] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging concurrent ada pro-
grams by deterministic execution. InIEEE Transactions on Software En-
gineering, volume 17(1), pages 45–63, January 1991.

[36] H. Thane. Monitoring, testing and debugging of distributed real-time
systems. InDoctoral Thesis, Royal Institute of Technology, KTH, S100
44 Stockholm, Sweden, May 2000. Mechatronic Laboratory, Department
of Machine Design.

[37] H. Thane and H. Hansson. Towards Systematic Testing of Distributed
Real-Time Systems. InProceedings of The 20th IEEE Real-Time Systems
Symposium, pages 360–369, 1999.

[38] J. J. P. Tsai, K.-Y. Fang, and Y.-D. Bi. On real-time software testing and
debugging. InProceedings of Fourteenth Annual International Computer
Software and Application Conference, pages 512–518, Oct 1990.

[39] Naoshi Uchihira, Shinichi Honiden, and Toshibumi Seki. Hypersequen-
tial programming: A new way to develop concurrent programs.5(3):44–
54, July/September 1997.

www.manaraa.com

BIBLIOGRAPHY 53

[40] J. M. Voas and K. W. Miller. Software testability:the new verification. In
IEEE Software, volume 12(3), pages 17–28, May 1995.

[41] S. N. Weiss. A formal framework for the study of concurrent program
testing. InProceedings of the Second Workshop on Software Testing,
Verificaion and Analysis, pages 106–113, July 1988.

[42] L. J. White and H. K. N. Leung. A firewall concept for both control-flow
and data-flow in regression integration testing. InProceedings., Confer-
ence on Software Maintenance, 1992, pages 262–271, 1992.

[43] J. A. Whittaker. What is software testing and why is it sohard. InIEEE
Software, January/February 2000.

[44] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of ef-
fective regression testing in practice. InProceedings. The Eight Interna-
tional Symposium on Software Reliability Engineering, pages 264–274,
1997.

[45] J. Xu and D. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. InIEEE Transaction on Software
Engineering, volume 16(3), pages 360–369, 1990.

[46] R-D. Yang and C-G. Chung. Path analysis testing of concurrent program.
In Information and Software Technology, volume 34(1), pages 43–56, Jan
1992.

[47] F. Zhu, S. Rayadurgam, and W.-T. Tsai. Automating regression testing
for real-time software in a distributed environment. InProceedings of
First International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 98), pages 373–382, 20-22 April 1998.

[48] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Softwareunit test
coverage and adequacy.ACM Computing Surveys (CSUR), 29(4):366–
427, 1997.

