Testing of Computer Software with

Temporal Constraints
A State-of-The-Art Report

Anders Pettersson
Department of Computer Science and Engineering
Malardalen University, Vasteras, Sweden
anders.pettersson@mdh.se

www.manharaa.com

Sammanfattning

Forekomsten av datorer i de konsumentprodukter vi anvaddgligen 6kar

hela tiden. M&nga av dessa datorer styrs av programvaraatEgarantera att
produkten ar anvandbar maste programvaran testas. Tywdamia testning

ofta &sidosatt p& grund av att testning ar resurskravand&astsam. Ett satt
att underlatta testningen &r att tillhandahalla verktyg owetoder som reduc-
erar arbetsinsatsen for utvecklare av programvara viditggt Denna 6versikt
av litteratur inom testning av programvara har till syfte@ka pa existerande
metoder och verktyg fér testing av programvara, speciedlatorsystem dar
det finns krav pa att tidsbeteendet inte strider mot spetifikan, sa kallade
realtidssystem

www.manharaa.com

Abstract

Computers in consumers product are increasing. Many oéthesputers are
controlled by software. To ensure that the consumer canhes@roduct as
expected the software must be tested. Unfortunatelyng&ioften neglected
because itis costly and resource demanding. One solutibistis to make test
tools and test methods available to the developers of stétvildhe purpose of
this report is to point out methods and tools for testing ahpater software,
especially for software that have constraints on their teralpbehavior, i.e.,
real-time systems.

www.manharaa.com

Contents

1 Introduction 7
1.1 Outline e 8
1.2 Terminology 8
2 Computer Software Testing 11
2.1 PlanningforTesting. 12
211 TestPlan 12
2.1.2 FaultHypothesis 13
213 TestCases. it 14
2.1.4 Initial Test Case Selection 14
2.1.5 TestCase Selection for Re-testing 14
2.2 Analysis of Computer Software Execution Behavior15
2.3 ExecutionBehavior 17
2.3.1 Synchronization 18
2.3.2 Observability 18
2.3.3 Determinism 0oL 19
2.3.4 Controllability 20
2.3.5 Reproducibility 20
23.6 Testability. 0L 21
2.4 Testing of Sequential Programs 22
241 UnitTesting. 23
2.4.2 IntegrationTesting 23
243 SystemTesting 23
3 Regression Testing 25
3.1 General Regression Test Assumptions 27
3.11 CostModels 28

www.manharaa.com

CONTENTS 5

3.2 Regression TestTechniques. 28
3.3 Algorithms for Regression Test Selection 03
3.3.1 Slicing Algorithm. 30
3.3.2 Incremental Regression Testing 31
3.3.3 Firewall concept for Regression Testing. 32
4 Testing of Concurrent Programs 35
4.1 Methods e 35
5 Testing of Real-Time Systems 37
5.1 Distributed Real-Time System 38
5.2 Testing of Real-Time Systems 38
5.2.1 Testing for Functional Correctness 40
5.2.2 Testing for Temporal Correctness 41
5.2.3 TestStrategies 42
5.2.4 TestBed Architectures 43
5.2.5 EnvironmentSimulators 44
5.3 Regression Testing of Real-Time Systems 44
6 Summary a7

www.manharaa.com

6 CONTENTS

www.manharaa.com

Chapter 1

Introduction

In our daily life we are more and more dependent on computedgfzeir soft-
ware. When we travel by airplane, use robots at work, or evattchvTV at
home, we expect them not to malfunction. Therefore, it isangnt that the
software does what the user expects and that it does not fail.

To establish the quality of the softwavalidationandVerificationare used.
Validation is used to establish that the software supphesservice specified
in the requirements. Verification is used to establish thataroperties of sup-
plied services are correct according to the requiremeritsdin specifications.
Verification can be done by statically analyzing the sofewvar analyzing the
software dynamically by executing the program, itesting

Based on the execution behavior, computer software can tegaézed
into three domains:

e Sequential programs, which are programs that runs from invocation to

termination without interruptions or interleaving.

e Concurrent programs, which are programs that execute within the same

time interval either by interleaved or simultaneous execut

e Real-time systems, which are programs where the correctness depends

on the functional behavior as well as the temporal behavior.

For these domains, the objective of testing is to find dewnmtibetween the
specified requirements and the observed results duringatiperof the soft-
ware.

www.manaraa.com

8 Terminology

Testing is a necessity in development of correct softwamvéver, testing
is not trivial even if it seems to be. For example, assume apcen program
that takes one input from a user and the user is supposedds @néy one key
but mistakenly press two keys simultaneously. If it is califdr the function-
ality that only one key is pressed at a time, all possible keppresses must
be tested in order to establish the correctness.

In the example above, the software should be tested wittoaibinations
(n-key presses) under all circumstances to ensure thatttgegmm is free from
defects. But the amount of tests then rapidly grows to beranas, and so are
also the costs for the testing. Consequently, exhaustmtgis in most cases
not possible.

In this state-of-the-art report we will discuss softwarstitegy and how dif-
ferent test methods can be applied on different types ofvsoét: sequential
programs, concurrent programs and real-time systems. dtesfwill be on
testing of real-time systems. But we will also discuss testif non-real-time
software to give an introduction to software testing in gahe

1.1 Outline

The outline of the rest of this report is as follows: In Chaptewve discuss
the fundamentals of testing. Testing of sequential prograndiscussed in
Chapter 2.4. In Chapter 3 we will discusgression testing.e., how to test
software after the code is modified or needs a retest. In @ndpwe will dis-
cuss testing of concurrent programs. In Chapter 5 testimgadftime software
is discussed, focusing mainly on functional testing of-téak systems.

1.2 Terminology

There exist several standards for the terminology used wiisussing com-
puter software testing, both international and natioral eikample, the IEEE
standard, the SIS standard and the ISO standard. In thist@perminology
that conforms to IEEE STD 610.12-1990 [26] will be used. Belae give the
terminology that is used in this report.

Correctness By correctness of the software it is meant that the behavior o

the program execution conforms to the behavior specifielddiptogram
specification.

www.manaraa.com

Terminology 9

Regression TestingSelective retest of a system or component to verify that
modifications have not caused unintended effects and thatytstem or
component still complies with its specified requiremeng] [2

Software, Application and Program In this reportsoftware applicationand
programare all an executable computer file that delivers servicesrde
ing to a specified behavior. Althougépftwarecan also be the documen-
tation and source code of the program, this will not be therprietation
used here.

Task Each individuataskcan bee seen as a small sequential program and is
the smallest user defined execution unit. Two or more taskslgacom-
municating with each other, form a more complex program avides
more complex problems than an individual task.

Test Testis an activity in which a system or componentis executelkr spec-
ified conditions, the results are observed or recorded, arelaluation
is made of some aspects of the system or component [26].

Testing Testing is the process of operating a system or componesetspec-
ified conditions, observing or recording the results, an#tingaan eval-
uation of some aspects of the system or component [26].

Threads and Processesn this report we do not distinguish between tasks,
threads and processes. However, in general there is a santifiliffer-
ence between them, but the difference do not affect the gstsoms in
our discussions, and hence we will here use task to dendtered.

Validation Is the process of evaluating a system or a component during or
at the end of the development process to determine whetkati#fies
specified requirements [26], i.e., validation aims at answethe ques-
tion are we building the right system

Verification |s the process of evaluating a system or component to determi
whether the products of a given development phase satisfyathditions
imposed at the start of that phase [26], i.e., verificatiomssat answering
the questiorare we building the system right

www.manaraa.com

10 Terminology

www.manharaa.com

Chapter 2

Computer Software Testing

The objective of testing is to reveal failures to elimindte faults in the soft-
ware, and thereby increase the confidence in the softwarés i§tdone by
applying test data to the software. But this raises sevssales, such as how
to select test data, how to measure the progress of testthg/aen to stop the
testing.

The test datatést casesmust be selected to be sufficient to satisfy the re-
quirements, i.e., the test data adequacy. According to Zalu[@8], one way to
categorize test data adequacy is to base the classificatittresource of infor-
mation for deriving test casesvhite-box testindimplementation based) and
specification-basellack-box testindspecification-based). Test cases gener-
ated using the black-box approach are based on the spdoiffigatd used for
functional testing and interface testing durimgegration testingand system
testing It is also used for performance testing, stress testingd,raliability
testing. The white-box (oglass-boX approach is based on knowledge of the
implementation and is used during unit testing in order taldish to what
extent the software is tested.

Testing approaches can be divided intoverage-based testir{gtructural
testing),fault-based testingnd error-based testing Coverage-based testing
methods can further be divided into: control-flow based aat-dlow based
testing.

Both control-flow and data-flow structural testing are otbased on a flow-
graph model of the structure of the program. The model isvddrby statically
analyzing the software either by the compiler or an analysi&

In fault-based testing it may not be sufficient to select tegh to meet

www.manaraa.com

12 Planning for Testing

some coverage criterion, but also chose test data basedwihatoextent the
test is expected to reveal a failure. Based on the approaddvéal failures,
testing methods can be divided intfault seeding mutation-basednd fault
injecting

Fault seeding testing is to intentionally add faults thatlarown to reveal
a failure. If m faults are seeded andfaults are found, then based erandm
an estimation of the remaining non-seeded faults can be made

Mutation testing is to create a set of mutated programs based original
program. Each of the mutated programs is expected to rev&@abée failure.
If the failure is revealed the test is then later used to testtriginal program.
When all mutated programs are tested an optimal set of tpatsrcan be de-
termined.

Fault injection evaluates the impact of changing the codbestate of the
software. This is done by using perturbation to change te emd observe the
result by instrumentation. Fault injection is mostly useddst the reliability
of the software.

Testing can also be used (1) to establish the level of cordelémat the
program will not fail during its operation and (2) to estahlithat specified
properties are satisfied. In contrast to fault-revealirsgst¢his is done by ap-
plying test cases to demonstrate the absence of faults.iglsasuccessful test
case does not reveal failures.

To be successful in testing there must be guidance for whestphow to
test, what to test and what tools to use for testing, i.ergtieea need for a test
plan.

2.1 Planning for Testing

2.1.1 TestPlan

A test plan is the documentation of the conditions and remoénts that must
be set for testing. The documentation can be formal or inédrpat it is im-
portant that there are no ambiguous requirements. One waghieve unam-
biguous documentation is to use mathematics [28].

A well-defined test plan should include, at least, well doentad require-
ments in a specification, strategies for initial testingegration testing and
system testing. According to Leung et al. [22] the test plarsihalso include:

e A strategy for regression testing.

www.manaraa.com

Planning for Testing 13

e A guideline for the test procedure, including a test destgatasgy, cov-
erage criteria and information on how to handle test casasdb not
need to be re-executed.

e Information for identification of test classes, test casecexion order,
and changes made to the software.

However this covers the general case. For real-time systespscially safety-
critical systems, it is often the case that all test casesxeecised in a retest.
Then we do not have to have strategies for selecting whitftteses to execute.

In Bertolino et al. [4] the authors present an approach fordwy test plans
for integration testing from a formal description based oftvgare architec-
tures. The purpose of the derived test plan is to describedhgonents of the
software and the connections between these components.

Rational Unified Proces§RUP) is a software development tool that en-
forces creation of test plans divided into well-defined @saduring the life
cycle of the software. RUP also encourages developersrtdesting the soft-
ware as early as possible by performing inspections on deatsrsuch as de-
sign specification and functional requirements. It has lsmwn that early
inspections of source code and documentation can reveab8@fecification
and programmer faults [8]. By using RUP and inspections éngairly phases
of the development, test efforts are reduced in the latesgha

2.1.2 Fault Hypothesis

The fault hypothesis is the definition of what a failing beloavs according
to the specification of the software [3]. What a failing bebais depends on
the current failure mode of the system. In Clarke et al. [7]assification of
different failure modes of sequential programs are definahtrol failures
value failures addressing failuregermination failuresandinput failures

For concurrent programs, in addition to the failure modesvatihe follow-
ing failures must be consideredrdering failures synchronization errorand
interleaving failures

In [19] the propagation of a programmers mistake or an ewaseut-
put leading to a failure is defined d8ault — Error — Failure. How-
ever, according to the IEEE STD [26] the words fault and earerused inter-
changeably. The above definition of fault and error is usetthénfault toler-
ance discipline. Consequently, with the same meaning ageabe definition
Error — Fault — Failure can also be found in the literature.

www.manaraa.com

14 Planning for Testing

2.1.3 Test Cases

There must also be specified input sequences for the testtexecThese input
sequences are callégest casesatest suites a collection of test cases.

For sequential programs a test case is often the input paeatoethe pro-
gram and the expected output from the program. Whereas niouccent pro-
grams the test cases are an input parameter, output paraandteome speci-
fied behavior of the system. For example, if the testing sgnats to find errors
with respect to in which order the task are synchronizingntthe input would
consists of the input parameter to the program and a validreypmization se-
quence [6].

2.1.4 Initial Test Case Selection

In the initial testing, the first test cases can be createddan a specification
(black-box). Later on when the specification is implementbd set of test
cases can be extended with structural-based test casde-fyax)).

Rothermel et al. [30] define a test case<asdenti fier, input, output >
in order to achieve maintainability and storage of test sasea database. As
complement to a test case definition, a test history mushdfeemaintained
together with scripts for test case execution. A test hystohelpful when re-
validating the test cases in a re-test of modified prograraspts for test case
execution are helpful in larger software projects, if thenter of test cases are
too many to handle manually or when tests are exercised glnon-working
time [27].

2.1.5 Test Case Selection for Re-testing

Leung et al. [22] propose how to categorize test cases iritereint classes.
These classes are: reusable test cases, re-testablesestaral obsolete test
cases.

e Reusable test cases are testing the unmodified parts of éedisation
and the program constructs. Re-execution of these tess talsepefully
not necessary since they produce the same output as theysedests.

e Re-testable test cases are testing the program consthattare modi-
fied, although the specification is not modified.

e Obsolete test cases are test cases that are no longer tdbecanise of
that input/output relations no longer are valid, the progdaas been

www.manaraa.com

Analysis of Computer Software Execution Behavior 15

modified so the test case no longer test the program constiuthe
test case no longer contribute to the structural coverage.

There is also a need to distinguish re-testable test casedlisolete test
cases. This introduces two new classes of test cases.

e New-structural test cases
e New-specification test cases

Wong et al. [44] propose a method that producesm@pleteut notprecise
set of test cases. A complete set of test cases containshantgdt cases that
should be used for re-validating the inherited functiaydliom the previous
version of the program. Precise sets of test cases do natd@dkest cases
where the previous version and the new version produce the saitput. They
discuss the cost of to being too ambitious in the effort toagebmplete and
precise subset of regression tests. Their proposed methozkntrate on the
flexibility of the test selection.

2.2 Analysis of Computer Software Execution Be-
havior

Analysis of programs are based on the test data adequaeyarigpecification-
based and implementation-based criteria. For sequentigrams, the test
coverage can be determined by analyzing the code at umt-l®y the use
of the coverage-based approach the following type of coderage can be
achieved:

e in control-flow based testing
— all-node all-branchandall-paths
¢ in data-flow based testing

— all defs coverageall p-uses coverageall c-uses coverageall c-
uses/some p-uses coverag# p-uses/some c-uses coveragd
uses coveragell du-paths coverage

The test coverage criteria can be used to (1) determine wiedrawe tested
the software enough and (2) when to stop testing.

www.manaraa.com

16 Analysis of Computer Software Execution Behavior

Program A(void) Program B(void)
{
read x; read z;
wite Xx; wite z;
} }
Program order Possible serializations
A-B read x; write X; read z; write z;
B-A read z; write z; read Xx; write Xx;

Figure 2.1: Example of possible serializations of the eealbehavior of two
sequential programs.

Because of the interleaved execution in concurrent progtamd real-time
systems, the analysis is more complex than analysis of séiguprograms,
and implies the use a programming constructs to synchrahetask in order
to avoid conflicts.

A common approach to derive serializations is to staticalialyze the
structure of the implementation [39]. Serializations césoae derived dy-
namically by instrumentation of the exercising program]|[3%owever, in both
approaches the competition for shared resources and symizhtions of tasks
must be considered. Using synchronization constructdy sis¢ semaphore
protocols or rendezvous in ADA, can do this. There are issi@sshould be
considered when using such approach, for example, unigseiéput, possi-
ble exposure of errors during test execution, and infeagibhcurrent program
serializations [41].

For real-time systems a common cause for interleaved execig that
the tick scheduler schedules a higher prioritized task,simgiprogramming
constructs that put the program on hold and lets other progran.

If synchronization constructs are used, then some of thalizations be-
come infeasible. For example, if two tasks, t#sknd taskB in a concurrent
program have precedence constraints such that a read iopdretaskA must
be exercised before a write operation in t&HR hen, all serializations in which
the write operation of tasB is exercised before the read operation in tAsk
are invalid serializations.

Also for multi-tasking programs two consecutive execusiarnith the same
input may have different execution behavior and even prediifferent out-
put [5]. Hence, making it impossible to test the program.

www.manaraa.com

Execution Behavior 17

Task A(void) Task B(void)
{ {
read Xx; read z;
wite x; wite z;
} }
Program order Possible serializations
A-B read x; write X; read z; write z;
B-A read z; write z; read x; write X;
A-B-A read x; read z; write z; write X;
B-A-B read z; read x; write X; write z;
A-B-A-B read x; read z; write Xx; write z;
B-A-B-A readz read x; write z; write x;

Figure 2.2: Example of possible serializations of the ekealbehavior of two
tasks in a concurrent program.

2.3 Execution Behavior

What is the execution behavior of a program? It can for exarbploutput val-
ues, signals, or the statements traversed in the exec|i6hshe behavior of
a program can be based on synchronization sequences, vengesequences,
and execution paths [46, 37].

Execution paths define in which order the statements in arprogre tra-
versed. For sequential programs the execution path of #iersents is exer-
cised in the order of the implementation and in which orderghograms are
invoked, see Figure 2.1.

For concurrent programs and multi-tasking real-time systéhe complex-
ity of deriving the serializations is increased. In Figur2 & is shown how the
interleaving can affect the traversed execution paths.

There are two types of execution characteristics of reaétsystemsnulti-

taskingandsingle-taskreal-time systems. Multi-tasking systems can further

be of two typespre-emptiveandnon pre-emptive Single task and non pre-
emptive real-time systems have similarities with exequttbaracteristics of
sequential programs since the task in such systems areiseein sequence
without interruption. Multi-tasking and pre-emptive réahe systems have the
same fundamental execution characteristic as concurregtgms.

www.manaraa.com

18 Execution Behavior

Priority Priority

Time Time

Figure 2.3 (a): Example 1 Figure 2.3 (b): Example 2

Figure 2.3:Example of two possible execution orderings from repeatedgtions of
two tasksA and B accessing the shared resouieanitialized to1. In Figure 2.3 (a)
task B precedes tasK and in Figure 2.3 (b) tasM precedes tasB

2.3.1 Synchronization

Multi-tasking programs may have requirements that restinie order of inter-
leaving between programs; such requirements may be du¢gadpendencies
between programs. Without these constraiate situationsan occur.

A race situation is when two or more tasks are competing faitéid re-
sources and it is not possible to & priori determine whichheftsks that is
going to win the competition. Example of limited resourcas be CPU, I/O
ports, and shared variables. In Figure 2.3 a race situagiorsualized by ex-
emplifying access to a shared resourceby two tasks, taskd and taskB.
Initially X is assigned the value The two possible orderings and results of
the computations are that tagkstarts to executes because of earlier release
time, folloed either by tasl3 preempting taskAd before A have completed
its operation onX (see Figure 2.3 (a)) computing the resultXf= 32, or
in the case thatl perform its operation oX before taskB preemptsA (see
Figure 2.3 (b)) the produced output is th&n= 17.

2.3.2 Observability

Observability is the ability to observe the state before after an operation.
Consequently, it must be possible to observe the inputubatpd the internal
state.

Observing the input and output in sequential programs >itforward,

www.manaraa.com

Execution Behavior 19

that is if the program does not include any non-determimigttements [33].

The inputs are observed to determine the behavior of therano'lg envi-
ronment. By observing the internal state, the exact caugheofailure can
be located, and internal state changes that have no effettteoautput can
be detected. The internal states of sequential programsbserved using in-
teractive debuggers or printouts in the code. One of thelpnob of using
interactive debuggers and auxiliary output to observetiead systems is that
the temporal behavior are changed during the observatgjni[8., even if we
can stop the program and observe the state, the time canmstofyeed in the
environment.

Observations can be done in different ways; visually by ingkat the
screen or printouts, or by using instrumentation. We asshiene that all ob-
servations are achieved by instrumentation.

There are three approaches for monitoring the state of softwhardware
based, software based and a combination of hardware arvdeseftObserva-
tions achieved by inserting monitoring probes into the cade then removing
the probes during normal operation could affect the behafithe execution.
This phenomenon is called the “probe effect” [9].

In [33] three techniques to handle the probe effect are disa, the probe
effect can be ignored, minimized or avoided. When obsereovcurrent pro-
grams and real-time systems we must avoid the probe effattistthe software
used for monitoring must remain in the application or notmeisive hardware
must be used. Another problem that occur when using monitorsal-time
systems is that temporal delays are introduced leadingigeioresponse times.

Yann-Hang et al. [20] propose a tool suite for testing r@aktADA ap-
plications. The tool suite includes an instrumentatior loplemented as an
ADA run-time library. Output generated from the analysid #ime instrumenta-
tion are flow graphs and trace files that are used to deterin@éedde coverage
criteria of the ADA-program. The analysis tool can handiéedént kinds of
coverage criteria, e.g., basic blocks coverage, c-userageeand p-use cov-
erage. However, in their paper the proposed test analysimtoonsider the
temporal behavior of the application.

2.3.3 Determinism

Executions of sequential programs are repeatable andndieistic. That is,

for an input we get the same output regardless of how manystineerun the
program with that input. This is true if the program does matude any state-
ments that depend on the temporal behavior and/or randoavimhExamples

www.manaraa.com

20 Execution Behavior

of such statements are random statements or dependenaiesock readings
in sequential programs [32].

In concurrent programs, each task is executed indeperydamd|therefore
it is often impossible to determine which execution pathghegram follows
each time we run the program. That is, for a unique input wegeardifferent
output for several consecutive runs.

Sang et al. [6] achieve deterministic testing by contrgllin which order
the programs synchronize for accesses to shared resointks case, in addi-
tion to the input to the program a synchronization sequemaigs derived from
the specification must be added. Between the forced synidation points the
programs run nondeterministically, and the nondeterrtilméxecution is then
used to check for nondeterminacy conformance between tgfgmtion and
the implementation. Running the program nondetermiraitidests behav-
ioral conformance, and during each execution of the progrensynchroniza-
tion sequences are logged. The logged synchronizatioreseqs are then an-
alyzed to see if the behavioral conformance is satisfiedg &aal. emphasize
that in nondeterministic execution not only valid synchration sequences
are executed but also invalid synchronization sequences.

2.3.4 Controllability

Controllability is the ability to force the program into agieed state. For se-
guential programs it is sufficient to give the input to thegram and set a
break-point at the desired program statement to achievedlability. For
multi-tasking programs controllability is achieved at aacser scale than for
sequential programs. Here synchronization sequencesaved by statically
analyzing the concurrent program and then forcing the faago traverse the
same trajectory as the derived synchronization sequence.

2.3.5 Reproducibility

Reproducibility — test repeatability — is the ability to reduce a previous ex-
ecution of a program. In other words, for a given input theterysalways
computes the same output in repeated runs of the system [26].

After errors have been corrected the tester wants to askatette error
have been removed and that no new errors have been introdlibecefore it
is necessary to test the system repeatedly. During repéageduns with the
same test cases, the same outputs must be observed in ocdé¢entmine if the
software is correct [26]. If test executions are not repigbdie re-testing cannot

www.manaraa.com

Execution Behavior 21

determine that corrections have removed the errors. Fortugoent programs
and real-time systems, in whighceshave impact on the execution path, the
program is not usually reproducible.

To reproduce the exact execution behavior of a sequentgrpm it is suf-
ficient to run the program repeatedly with the same input.rtteoto reproduce
the execution behavior of multi-tasking programs it is ndfisient to repeat-
edly feed the same input to guarantee the same output. Thezause of the
race situations that can occur when programs concurreotigsses shared re-
sources. For real-time systems it is not sufficient to cagrsiahly the ordering
of the accesses, in addition the time at which the accessrectonust also be
considered [33]. Other causes for making RTS non-reprdudeican be non-
determinism in hardware, communication protocols, nekaffics, etc. [25],
and reading of real-time and random numbers [33].

There are two approaches to reproducibility (or test regigifity): thelan-
guage basednd themplementation baseapproaches.

The language based approach transforms a program into a rogsam
that includes program constructs that constrains the eigcin order to force
the control of the execution. Carver et al. [5] propose a tootransformation
of concurrent programs. Based on the language used and widdirsnization
constructs that are available in the language, e.g., AD#leavous or moni-
tors, the tool creates a new program that forces the exetutiollow a derived
synchronization sequence of the concurrent program.

The implementation based approach requires an eventyistbe behav-
ior of a program is logged during run-time in a history log. eTimformation
in the history log is then used to reproduce the behavior efetkecution. In
Thane [36] an implementation based method for creating @ryidog and
reproducing the behavior of real-time systems by detestimreplay is intro-
duced.

2.3.6 Testability

The IEEE standard [26] defines testability as the ability eate test cases
that satisfies the test criteria. An extended definition ti@tonly includes
the metrics of creating test cases but also consider theapiiitly of revealing
a failure during testing is proposed by Voas et al. [40]. Théso propose
approaches for analyzing the software to measure the thigtabne important
issue is to determine the parts of the code that are mosy ltkehide faults.
This analysis is based dnformation lossin the data;explicit and implicit
information loss.

www.manaraa.com

22 Testing of Sequential Programs

Explicit information loss is when computations of data aot observed
during test execution. Hence, explicit information loss caly be found by
static analysis of the implementation. This makes anatgdie performed pos-
sible only late in the development, since the implementatiust have been
completed. The most frequent cause of explicit informatmss is the hid-
ing of internal information. However, information hiding often used in well
structured programming approaches to prevent uninteratagering with in-
ternal data of software modules. Explicit information Iégsa design issue and
can be solved by designing the software not to hide interrfatination.

Implicit information loss is when different data are fed aput but when
the same data is presented as result. There exists a camebstween the
cardinality of the input and cardinality of the output, ealldomain/range ra-
tio (DRR). If software has high DRR it is considered to haw testability.
Solutions to reduce implicit information loss include &thg implicit infor-
mation loss using specification decomposition, minimizamagable reuse and
increasing the number of out parameters. The benefit of aisallgr implicit
information loss is that it can be performed early in the depment. Based
on the above assumption Voas et al. propose an analysis digtiiomeasures
the probability of software failure [40].

Testability analysis and testing complements each othbairthe testabil-
ity analysis can give guidance on where in the code testifagtefshould be
spent.

2.4 Testing of Sequential Programs

In most software projects the testing phase often standsgfdo 50% of the

development cost. Mainly because the testing process aftetves man-

ual tasks, and that expensive test equipment often is nemagdhat these
resources are limited and shared between testers. Othsesdiat increase
the cost of testing are: the difficulty to create test casésigee number of test
cases, the need for re-tests, the time to execute each sestate.

Testing of computer software can be divided into four phasedeling the
software’s environmenselecting test scenaripsunning and evaluating test
scenariosand measuring test progredg3]. The test execution can further
be divided into three sub-phasenit testing integration testingand system
testing

www.manaraa.com

Testing of Sequential Programs 23

2.4.1 Unit Testing

A unit can be a function, a collection of functions, a taskphection of tasks,
etc. Rarely a unit is a whole program unless the program ig simall.

Unit testing is often performed by the programmer. The paogmer com-
piles the unit on the development platform and feeds thetin@nually or by
a test program. However, this technique cannot revealr&slthat may occur
during execution in the program’s real envronment.

There have been several structural testing methods prdosh as state-
ment coverage, branch coverage and path coverage. To de¢epaths and
coverage, often a control-flow graph that represents thietsire is used [48].

Functional testing techniques aims to test that the output the function
correlates to the given input and is correct with respechmrequirements.
The functional test also aims to assure that the interfa¢enaftions is correct
and is properly used. There are several approaches fora@reof inputs for
unit tests, for examplboundary value testsandom test®r statistical tests

2.4.2 Integration Testing

Integration testing is the phase when the units are integraith each other
and tested. Approaches for integration testingiaceementaltop down bot-

tom upor thebig-bangapproach. Incremental integration testing is to stepwise

integrate the program unit for unit. Top down integratiostiteg is to integrate
the program by starting with the main unit and then integtlageunits as they
are called from the units above in the hierarchy. Bottom upreach is the
opposite to top down approach, the ingration is started fioenunits that is
in the lowest level of the call hierarchy. In both the top doawrd the bottom
up approach it can be neccessary to use stubs, dummy unithofe units,
which are not yet subject for testing. The big bang apprachtegration test-
ing means that all units functionality are implemented amehtall units are
intgrated at the same time.

2.4.3 System Testing

When integration testing have been performed, systemmteitiperformed in
the programs real environment, with realistic scenariompfits, outputs and
the load of the system.

Despite that there exists several phases the differens typtesting are not
isolated activities; testing is an iterative process. Bameple, system testing

www.manaraa.com

24 Testing of Sequential Programs

can be done several times in a project because we have sefsytstat will be
put together into the final system, and during maintenangkésfare corrected
and new functionality are added or removed.

www.manharaa.com

Chapter 3

Regression Testing

Regression testing strategies can be of two types. EitHewae can be re-
tested with all test casereftest al) or with a subset of the test casaglective
regression te3t Selective regression testing can be to select enoughdest
to reveal all failures, minimal number of test cases or ge&st cases that only
traverse the modified paths of a program. Retesting a saftwéth a sub-
set of test cases can reduce the cost of testing the softenadeis therefore
the most common approach in academic papers. Onoma et fldigzlss
approaches for regression test selection. In their papesragwork is pre-
sented, the multilevel regression testing framework, thestelopers can use
for regression testing during development and maintenambey emphasize
the difference between the academic and industrial viewtwtis important
issues in regression testing:

“While researchers are mostly concerned with reducing the
number of test cases for re-testing, there are other impuitsues
in using regression testing in an industrial environméf7]

One issue is that although the re-test all strategy is caestty time consum-
ing, it is not always desirable to find a subset of test casespeéially for
those companies that must use retest-all method becauseaifhcconstraints
such as safety-critical programs, etc [27]. Examples oéoissues can be the
use of tools for automation when regression testing are esezhsively and
frequently. A drawback of regression testing is that theesaf test cases in-
creases when the software is maintained and this makesgesten more time
consuming.

www.manaraa.com

26 CHAPTER 3. REGRESSION TESTING

Leung et al. [22] have identified two types of regressioningstorrective
and progressive Progressive regression testing is caused by modificafion o
both code and specification, whereas corrective regressiiimg only com-
prise code modification.

When using regression testing selection techniques the bascept is to
test only the modified parts of the program, but this can |leadndisclosed
failures since not all test cases that possibly revealarfsl are re-executed.
There have been extensive research on regression testimgjidees and most
of them address the regression selection problem [1, 1229331, 42, 44].
Many of the algorithms aim to select test cases were the nduharold version
of the program differs in output. Others are concentrateddoieve certain
degree of coverage. Wong et al. [44] propose a techniqueitiedboth of these
approaches. The proposed approach is based on two technigjonémization
andtest case prioritization

A definition of regression testing problems is found in Rothel et al. [30].
They define four problems and describe how to proceed wherisgaegres-
sion testing: Let P be a procedure or program, l€?’ be a modified version of
P and letT be a test suit foiP. A typical regression test proceeds as follows:

1. Selectl” C T, a set of test cases to execute/n
2. TestP’ with T, establishingP”’s correctness with respect f6'.

3. If necessary, creat@”, a set of new functional or structural test cases
for P’.

4. TestP’ with T”, establishingP”’s correctness with respect f6”.
5. CreateT"”, a new test suit and test history &, fromT”, 7", andT"".

The first step is the regression test selection problem. Ei@tof test cases
are addressed in steps 2 and 4. In step 3 the problem of howetct $est
case to get enough coverage is defined. While step 5 addeegsdhlem of
maintenance of a test suit.

Leung et al. [22] divides the regression testing problero tato subprob-
lems: the test selection problem (1) and the test plan upmtatdem (2). In
selection of test cases to test a modified program, seldatdess from an ex-
isting test plan, and create new test cases based on madéaatiaiis. For
(2), see Section 2.1.3, where the update problem is included

Most of the existing regression test techniques are usingtsiral based
test cases (white box testing). This because most of therpathe structure

www.manaraa.com

General Regression Test Assumptions 27

of the old program with the new program, and then the testes to get the
same coverage percentage as the previous test.

According to Kim et al. [15] most regression testing teclusis concen-
trate on the test selection problem, ignoring other impurissues of regres-
sion testing. Equal important to the selection problem & igsue of what
triggers the regression testing event. Should tests beuts@periodically or
at some pre-determined instance, for example, after aligbs, after modifi-
cation of critical components, or during final testing. Thegbthesis for their
work is based on the fact that the amount of changes betwgessision testing
sessions affect the cost effectiveness, since the tegrewits for each modifi-
cation leading to that more test cases are selected in egssjon. The impact
of this is that the effort to select failure revealing tesse&aalso increase and
makes selection algorithms less cost effective.

3.1 General Regression Test Assumptions

Many regression testing strategies assume that the prograeguential; re-
gression testing is performed at unit level, and there sxastvell designed
specification, well designed test plan, and control- andéba-flow graph with
a single entry and exit point. Leung et al. [22] discuss aggions regarding
characteristic of programs such as:

e the programis single entry and single exit
e the program is not too simple
e the program is not too complex

Functions can easily be adapted to the first assumption leyting a start and
end node in a control-flow graph. White et al. [42] propose dhoa where
the control-flow is modeled as a call graph, and here the siagtry and exit
assumption is not an issue since a call graph is represestadrae and the
call chain starts and ends in the root node of the tree.

The second and third assumptions are more difficult to oveecdere are
cost/benefit trade-offs important and should be considelfetthe program is
too simple then the set of test cases may be small and theac@stiécting test
cases is more than re-execute all the tests.

Leung [21] have examined the fundamentals of selectiveessimn testing
when divided into two strategieselective regression unit testiagdselective

regression function testingWWhere function testing addresses integration and

www.manaraa.com

28 Regression Test Techniques

system test. Unit testing refers to strategies where straktoverage criteria
must be met. For unit testing Leung discyssper scope assumption3he
approach is to choose a scope such as that all faults in a ed@ifogram are
revealed. This can however lead to unnecessary testing is¢bpe is large.
They claim the problem is to design a selective regressidrtesting strategy
to minimize the scope and code to re-test.

3.1.1 Cost Models

Onoma et al. [27] talk about costs in regression testingthmyt only consider
the cost of the testers and not the cost of machine time. Tsei€@pproxi-
mated by the time spent aleveloping test casgge-validating execution of
the test sujtcomparing the resultsandfault identification They emphasize
that if the cost for analyzing which test cases to select frtaset of the previ-
ous set of test cases exceeds the cost of running the uresktest cases, then
the retest-all method is more cost-effective than a seledéchnique.

Leung et al. [23] discuss a cost model that compares regres¢ssting
strategies, and in particular selective regression testegfies. The cost can be
of two types:direct andindirect Direct costs are the cost for resources used
during test, such as test analyst’s time and equipment farutixg the test.
Indirect costs are the cost for development of tools, mamage: and database
storage. The model takes into accosystem analysis cqgest selection cost
test execution costndresult analysis cost

3.2 Regression Test Techniques

There exists numerous regression test selection techs[§e 30], for exam-
ple:

e retest-alltechniques

e random/ad-hookechniques

minimizationtechniques

safetechniques

data-flow/coverageechniques

prioritization techniques

www.manaraa.com

Regression Test Techniques 29

In the retest-all method, as the name indicates, all theiqueutest cases
are used in the regression test phase. This can however bptabte if the
program is small; the number of re-tests is small. For lasgpétware projects
and where regression testing is used frequently rerun dakatl cases is not
acceptable. If we have to consider the cost of running testar the amount
of test cases is too large we can use a regression test salésthniques that
select a subset of the previous set of test cases.

By randomly selecting a subset of test cases there are nameas that
those test cases that need to be rerun are in the subsetrsTegtea priori
knowledge of the system can see to that if some test casesissmgthese
test cases can be added to the test suit.

In minimization techniques the goal is to select a minimdlssi of test
cases, where each test case corresponds to the impact obtfigcation in the
program. The method selects at least one test case thatexaseuy modified
or added statement.

Safe techniques selects test cases necessary to reveailtlif the mod-
ified program. This can lead to that in some cases the rellemtésafe tech-
niques selects the same set of test cases. According to Kain eh average
the safe method selects 68% of the test cases [15]. If thensetfeod selects
all test cases, then it is less effective than the reteseelinique since in safe
method an analysis is done to determine what modificatioms haen made.
By using regression testing techniques that sqletentially revealing teg29]
no & priori knowledge is needed as in techniques that corateriess on cov-
erage criteria. Rothermel et al. [29] assumes that foueGatmust hold for
their algorithm to select a safe subset of test casaf&ety precision efficiency
andgenerality

Coverage techniques aim to select only those test casesabhatse paths
were the program have been changed. The coverage can |ldwat sptne test
cases are not selected, although they should have becaysetrerse possibly
affected parts of the program.

With a prioritization technique, test cases can be exeddisesuch an or-
der that those test cases that reveal failures early in gtmgeprocess or get
confidence and coverage criteria increased at a faster3alefe re-executed
first. It depends on the application what should be concewtezh choosing
prioritization criteria. Wong et al. [44] propose that tesises are prioritized
by cost per additional coverage to reveal failures early.

www.manaraa.com

30 Algorithms for Regression Test Selection

3.3 Algorithms for Regression Test Selection
e Slicing Algorithm
¢ Incremental Algorithm

e Firewall Algorithm (Adapted firewall Algorithm/Firewalltantegration
Algorithm)

3.3.1 Slicing Algorithm

Gupta et al. [13] propose a selective regression testingniquoe using a data
flow based slicing algorithm that satisfies tleusestest criteria. By using a
slicing algorithm the authors aims to remove the need of teasnce of a test
suit. The test suit can be omitted sincedsf-use pairare explicitly detected.
A def-use pair is a pair of a definition and the use of the végial®ince the
def-use pairs must be computed there is a need for data flonniation. This
information can be represented by nodes in a control flowlgraglef-use pair
can be eithecomputation usefC-uses) opredicate usefP-uses). C-uses that
occurs in computation statements and P-uses in conditstai@ments.

Def-use pairs affected by program changes can be dividedhva cate-
gories:

e Directly affected
¢ Indirectly affected

Directly affected def-use pairs are program changes duadertion or
deletion of variable uses and definitions. For example,tdesnentis changed

fromVar = 1toVar = 1 + VarZ then new def-use pairs must be created

and the use oV arZ must be tested.
Indirectly affected def-use pairs can be of two types:

(I) A programis edited, forexampar = 1ischangedtd’ar = — 1,
and no new def-use pairs are created but the change affectaltie for
computation in a def-use pair. The def-use pairs that usenw value
must be re-tested.

(I A def-use pair that test a condition path and is affedbgda program
change, for example War < 0is changed td/ar > 0, then the
def-use pairs must be re-tested.

www.manaraa.com

Algorithms for Regression Test Selection 31

To identify all def-use pairs that are affected by progrararges the au-
thors use a slicing algorithm. The program must be modeledamtrol flow
graph (CFG) where each node represent a program statemeiaah edge
represent a path between two statementdagkwardand forward walk al-
gorithm are applied on the CFG, these algorithms identifieded-use pairs.
Backward walk algorithm identifies definitions of variableg traversing the
CFG in a backward direction from the use of the variablesl itrttiave found
all definitions and their corresponding paths.

3.3.2 Incremental Regression Testing

As most regression testing algorithms, the incrementakission testing algo-
rithm proposed by Agrawal et al. [1] assumes that the proggambe repre-
sented as a control-flow graph (CFG) extended with inforomatif the data-
flow. The algorithms is built on a simple model of changes:

(1) to fix faults.

(2) the specification is changed.

In (1) all test cases that produce an incorrect output in teeipus test must
be rerun to verify that the output after the changes is cortag2) all test-cases
that are considered to be incorrect according to the chasgedification must
be rerun even if they produced a correct output in the pres/iest.

The authors propose three methods for incremental regresssting:

e The execution slice technique.
e The dynamic slice technique.
e The relevant slice technique.

The methods are based on four observations, and these atisesvhave
been verified through experiments that reveal how many reetiés that are
executed under each test case.

The methods can be applied on changes that hold for the foigpassump-
tions:

¢ No changes are made to the CFG.

¢ No changes are made to the left-hand-side of an assignment.

www.manaraa.com

32 Algorithms for Regression Test Selection

The execution slice technique strategy is to off-line detae the set of
statements executed under each test case. Then, wheingetast program,
only those test cases with sets of statements containingdifietbstatement
need to be rerun. The execution slice technique can alsoduktagest a pro-
gram at unit and function level. This makes it suitable everidrger software
projects or when the test strategy is black-box testings ihidlone by not con-
sidering which statement that are executed, instead theadetan determine
which module that are executed under a test case.

In some cases a modification to a statement leads to thastatidees are se-
lected. This happens when for example the predicate of attonal statement
is changed but the conditional block does not affect the wutphe problem
of selecting all test cases in some cases are solved by udyrpanic program
slice technique. The method determines in which test chganodified state-
ment affects the output. However the method can not determirat type of
modification that is made. The problem with this is that if th&nges intro-
duces new faults then the faulty change is not detected sfeeant test cases
are not rerun.

The proposed solution identifies potential dependenciesuddbles in an
execution history. The relevant slice technique determipetential depen-
dencies of a variable if in a path of the execution history afirdgtions of the
variable can be found between a predicate and the use of tiadlea and there
exist a definition of the variable in another path. Both patiast in the predi-
cate and end in the computation that use the potentiallyrdigre variable.

The authors give an example when the relevant slicing teclenhave de-
ficiencies. This can happen when a use of a variable is coéqméndent of a
previous predicate. This can lead to unnecessary rerustodases. They solve
this by excluding the statements that have control depariegio a predicate
that may affect the output from the set of statements.

3.3.3 Firewall concept for Regression Testing

As the previous methods tHfaewall concept proposed by White et al. [42]
requires a model of control-flow which is modeled as a calpfréCG). The
CG shows the control-flow at module level. There are thre@lmssumption
for the firewall approach. All module dependencies must beeted in the
CG, there are no other errors than those caused by the modibedles, and
the unit and integration test must be reliable.

The firewall is a boundary such as that the firewall comprigeftimctions
that need to be modified. The main idea is to aim for that afraodification

www.manaraa.com

Algorithms for Regression Test Selection 33

the number of modules inside the firewall is not increased.

Besides the CG there must also exist a module/test matiixiyfmamically
obtain which modules that each test case tests. The matoxradludes which
modules that calls a module. These calls are mapped to thgreph. A
firewall is applied to the call graph and contains the set oflified modules
that need to be re-tested. Then a subset is selected fronetioé test cases
bounded by the fire-wall and determined by the module/testixa

Even though the paper aims at integration regression tgstia authors
discuss the importance of using regression testing in @sph of a program’s
life-cycle, and that the sooner a regression error is foheddss are the testing
costs. Since the dependencies are computed from a call ragghis no infor-
mation about the internal structure of the modules. In otvends, the method
is a black-box regression testing strategy.

www.manaraa.com

34 Algorithms for Regression Test Selection

www.manharaa.com

Chapter 4

Testing of Concurrent
Programs

Race situations and nondeterministic execution behaviwease the complex-
ity of concurrent programs. This leads to two major problesten testing

concurrent or multi-tasking programs: the ability to olv&eand control the
execution of concurrent programs.

4.1 Methods

In Carver et al. [5] the authors propose a method that by symibation con-
structs force an execution to follow a derived synchronimasequence. What
synchronization constructs to choose is determined by tbgramming lan-
guage. Examples of such synchronization construct canrbafgores, mon-
itors, or rendezvous in the programming language ADA. Théoeis called
deterministic execution testindouring an execution, information of the syn-
chronization sequence is logged and when the implementesie-tested not
only the input is feed to the program but also the previougéssynchroniza-
tion sequence. The program is forced to exercise the syniation sequence.
This is done by constructing a new version of the originalgpaon. The new
program is constructed by a tool that add synchronizatiostacts, supported
by the language that is used, that guarantees that the pndghaws the de-
rived synchronization sequence.

During the program execution of the guaranteed synchrtéinizaequence

www.manaraa.com

36 Methods

debugging information can be logged at re-execution of teg@am. The de-
bugging information can then be used to assure that the eaws been cor-
rected. To make sure that the correction have not introdneadbugs not only
the test that revealed the error must be re-executed, a¢s@opis test must be
re-executed.

Sang Chung et al. [6] propose a method that use synchromizsgiquences
derived from message sequence charts. However, in botleCetral. and Sang
Chung et al. they focus on concurrent program testing ancbtloansider the
temporal behavior of the program. Sang Chung et al. [6] ugie Idlocks [18]
to determine the order of the messages. Logic clocks candgkasslong as we
do not have to consider at which time an event have happechvidithe case
of software in real-time systems.

To achieve testing of real-time systems we also need to denat which
time events occur. Then logical clocks cannot be used sirt@mnot be deter-
mined when an event occur only in which order the occur.

In Yang et al. [46] the authors propose a test method fortgsif concur-
rent programs. In the paper a model of the execution behaoiosist of the
input value), the produced execution path ¢r C-path), and a rendevouze
path ¢ or C-route). The basic idea in their paper is to find uniquespat in-

put and rendevouze path (o) and determine which execution path the unique

pair can be correlated to. By adding the C-route to the inpeitiniqueness of
each produced C-path is guaranteed. In other words for egueated test run
with the same input that traverse the same C-path must a@gerte the same
C-route. Not all C-route are feasible. There can be deparidshetween tasks
that makes some C-paths infeasible, for example, rendgatins that lead to
deadlocks.

The test method proposed in the paper is performed in sirrdifft steps
that involves static analysis of each individual task oneori find C-paths
and C-routes. When the analysis and selection of test cases), is done the
test execution is performed in two stages first a nondetdstitriest execution
with only « from the test case. Second stage is a controlled test egaduti
which the execution is forced. The second stage, forcedsixecof o, can be
used to determine feasible C-routes since the forced ewecot an infeasible
C-route will lead to a failure of the execution for exampleadlocks.

www.manaraa.com

Chapter 5

Testing of Real-Time Systems

Real-time systems are software and hardware that in cobpenaith their
environment, and based on inputs from the environment,yme@nd deliver
results within specified time intervals. The time intenas determined by the
temporal constraints derived from the temporal propedigbe environment.
Because of the temporal constraints on the interaction detvthe real-time
system and its environment the date of the data (inputs atpits) is impor-
tant [33]. Below is a definition of a real-time system:

“A real-time system is a system whose correctness depends not
only on the logical result(s) of a computation, but also oa time
at which the result(s) are producefB3].

There is a widespread range of programs that apply to theitiefirof
real-time systems, ranging from video and audio streamirey &thernet to
pacemakers. To make distinction between different typasalftime systems
they are categorized into two major types based on theicality hard real-
time systemandsoft real-time systems

Hard Real-Time Systems are systems in which a failure or violation of tem-
poral constraints often leads to unacceptable conseqssnch as huge
financial losses or human injuries.

Soft Real-Time Systems are systems in which it can be acceptable to allow
occasional violations of temporal constraints. Howeveer¢ may be
constraints on how many violations that are allowed and teguency
of the violations.

www.manaraa.com

38 Testing of Real-Time Systems

Each type of system can further be grouped into the follovenlggroups
based on the underlying execution model in the system anih¢beations of
the taskspvent triggeredandtime triggeredreal-time systems:

Event Triggered Real-Time Systems are systems that are driven by external
and/or internal events. Examples of events are signalssagespassing,
internal interrupts (i.e. software interrupts), exterimarrupts. In other
words, the run-time environment allow instances of tasksetéanvoked
at arbitrary points in time so the granularity of the reletis®s is in the
domain of continuous time.

Time Triggered Real-Time Systems are systems that are driven by a timer that
periodically starts a scheduler that invokes instances tafsk. That
is, the run-time environment only allows tasks to be invoktdre-
determined points in time. Each instance of a task is thezefdeased
at discrete points in time.

5.1 Distributed Real-Time System

Distributed real-time systems are systems where compuatire performed at
self-contained computers (nodes) that are interconndsgtednetwork. Com-
munication between the nodes is achieved by messages gpassirthe pro-
cesses can use synchronization to maintain a precedeatiemedr mutual ex-
clusion between processes on different nodes. Processiae same node also
use the communication service. A designer of real-timeesysiften chose dis-
tributed solutions because of increasing complexity afetgaequirements. A
distributed solution makes it possible to achieve greagkalility through re-
dundancy. Also the inherited distribution of the systent,dgample, control
systems on a factory floor can be a cause to chose a distribakeiion [33].

5.2 Testing of Real-Time Systems

Hassan Gomaa [11] propose a software development approacbd-time
systems that incorporates tools for automated testingabftn@e systems. The
development approach and the tools have been evaluatedareastudy in
the development of a robot controller. The development @gg is based
on the software design method DARTS (Design Approach fol-Reae Sys-
tems) [10]. The design of a real-time system is to decompussystem into

www.manaraa.com

Testing of Real-Time Systems 39

task and defining the tasks’ interfaces according to theireauents in the
specification. Thus, it is important to formally review thesijn specifications
and to verify that the task decomposition conforms to thei§ijgation. After
a detailed design specification has been accomplished tietidnality of the
tasks are implemented.

The functional requirements are describeddaya-flow diagramgor each
task, this can be done since each task alone is a sequenighpr. The syn-
chronization of tasks is assumed to be solved by using evdriite receiver
of the event blocks itself in order to wait for a wake-up signéhe control
flow of the events is described in @&went sequence diagrafmased on a task
structure chart, which makes it possible to define the flow arevdetail and
finer grained than the data-flow diagram. Since the input anput events are
described in the event sequence diagram it is possible teedist cases for
the integration test phase. But before starting integnatidsting each task is
functionally tested on the host computer.

The unit testing and the initial functional integrationtirg are exercised
on the host computer. The reason for this is that there agg ofiore and better
tools on the host computer than for the target system. Atsg,rmuch more
efficient to test on the host computer than on the targetqiatbecause testing
can be more easily automated on the host.

For system testing and the initial temporal integratioings the synchro-
nization of tasks are tested by creating a skeleton of the mmaidule of the
task. This skeleton consists of the synchronization cantgr Testing can then
be performed by using a stub that sends signals to wake upgkétat is wait-
ing for the signal. After the synchronization parts aregdsnore functionality
can be added to the skeleton and be tested. Automated testea-time sys-
tem on the host computer can only test for logical corregndtscannot test
for temporal behavior.

After integration testing on the host the real-time systetested on the tar-
get platform. Preferably this is done in a incremental bottg approach. This
is because of the more low level functionality implementeslless drivers and
environment simulators must be implemented. The automatidghe system
testing assumes that there exists a secondary storagefioigsbf test results.
Preferably, the target is tested with an environment sitoulhat are feeding
inputs and receiving and time-stamping outputs from théesys The testing
can be controlled by test scripts from an external comptugtris running the
environment simulator.

In order for the host/target testing approach to work thestigyment tools
used (e.g. compilers) must support both the host and thettplatform.

www.manaraa.com

40 Testing of Real-Time Systems

Koehnemann et al. [16] observed that testing (and debuygieglimited
by the constraints of the software in real-time systems.nfipda of such con-
straints are concurrent designs, real-time constraindsemmbedded target en-
vironment. They also discuss increased complexity of coectiand real-time
software that leads to increased complexity of the testing.

Test execution of real-time systems (that often also areeeltid systems)
can be divided into four phases:

1. Unit Testing

2. Integration Testing

3. System Testing

4. Hardware/Software Integration Testing

in which the three first phases are similar to the phases ofetescution of
sequential programs. The fourth step is the testing of ctmess of the con-
trol of devices attached to the system, i.e. the environménth the real-time
system are controlling. In practice, the test executioraithgphase is often per-
formed in two steps [33]. The first step consists of executicthe application
while recording the behavior. Then in the second step, therded behavior
is analyzed.

5.2.1 Testing for Functional Correctness

Thane et al. [37] is addressing the problem of testing diisted real-time sys-
tems in a deterministic way. The difference in testing setjaéprograms and
concurrent programs is that for the same sequence of inpiféseht output

can be produced by the concurrent program. Therefore, s¢igliesting tech-
niques cannot be used to test concurrent programs andmeakystems. The
authors propose a approach for testing of distributed tigad-systems using
sequential test tools.

The test approach is divided into three iterative steps:

1. identify the set of possible execution orderings (seddions),
2. test the system using any test technique of choice,

3. map each test case and output onto the correct executienmg, based
on observation and

4. repeat 1-3 until required coverage is achieved.

www.manaraa.com

Testing of Real-Time Systems 41

In the first step a static off-line analysis of the softwarpésformed. This
is done by using a analysis tool that derives all possiblewi@n orderings
and creates Execution Order GrapfEOG). The EOG is a output from a sim-
ulation of the behavior of a preemptive scheduling policy32, 45]. More
exactly the graph is showing the non-deterministicallydbr in the execu-
tion of the real-time software. The analysis tool assumasékecution time,
priority and release time are known. Release times and tiogitigs of the
tasks are determined at design time. However, executicestiohtasks cannot
be easily determined neither at design or when specificagioralized in a
implementation.

The second step are the exercise of test case on the targsiriayappro-
priate testing techniques. During the run of test casesstbewtion behavior,
i.e. the control flow of a particular test run, are monitored @aved in a log.
Since the test approach do not consider the the no-detestisibehavior until
later steps testing tools for test of sequential programsbeaused in this step.

In the next step the analyzed and observed execution behedacom-
pared. If a test case and corresponding execution behaidie mapped onto
a branch in the EOG the mapping are noted and the steps am@tedpmtil
coverage criteria are fulfilled. The coverage criteria dren types the first is
how many times each branch have been observed during theitssand the
second how many of the unique branches have been observed.

The deterministic approach in testing of distributed rirmle systems is
achieved in step 3. The definition of determinism are; fohdast case during
repeated test runs the same output is observed. By in additithe test case
also observe the execution behavior as output determisisichieved in step 3
when mapping the output onto the EOG.

In distributed systems during the exercise of the test capasach node
the control flow are saved in a log. The difference betweetmigsf a single
node system and a distributed system is that on each nodeddleclock must
be synchronized with other local clocks on other nodes aedrhbrease of
complexity when analysis in step 1 is performed.

5.2.2 Testing for Temporal Correctness

Tsai et al. [38] provides methods for dynamic analysis of@ctness of tempo-
ral constraints of real-time software. The approach is asea non-intrusive
monitoring technique that record run-time information €Tan-time informa-
tion is then used to analyze the software for violations offieral constraints.
From the run-time information graphs are constructed falysis of tempo-

www.manaraa.com

42 Testing of Real-Time Systems

ral constraints. The graphs created anmed Process Interaction Gramnd
Dedicated Timed Process Interaction Graph

In Khoumsi [14] the author propose a method to test the teedpmn-
straints of the output from distributed real-time systerfise method consists
of three phases how to specify a distributed real-time systedistributed test
architecture and a procedure for distributing test seqegnc

The method assumes that the distributed real-time systenodeled as a
n-port Timed Automata. Based on this model the temporaltcaimés are de-
rived and transformed into global test sequences that atelilited totesters
Testers are independent nodes that feed the system wittsiaptine appropri-
ate instance of time and receive output for analysis of tirpteral correctness.

To verify the order and timing of the inputs and outputs eashetr have an
assigned local clock that can be asked for the time and tfa ébock can be
used as an alarm for the timing of the input.

This method test the timing and order of the output from thadritiuted
real-time system. This is an important aspect of a real-sysem since the
correctness of such system depends on at which time the regarbduced.
However, the author do not discuss the problem of havingkslan different
sites in a distributed system. The drift of clocks is a prabler the global
view of what the time it is. It is not mentioned how the clockftdeffect the
analysis of the timing of the outputs.

5.2.3 Test Strategies

Test strategies are descriptions on how to set-up the sygerform the test
execution and analyze the result of the test execution cftatese.

Schuitz [32, 34] have proposed a test strategy for testingstrilolited real-
time systems, designed for the MARS architecture. The temtiegly consists
of five different test phases

e Task Test

Cluster Test

Interface Test

System Tesind

Field Test

www.manaraa.com

Testing of Real-Time Systems 43

Task Test are functional testing and preliminary interface testipgr-
formed on the individual tasks. Task test are performed@gton the host
system. This demands that the task programmer are suppiiie@ppropriate
programming tool set.

Cluster Test are performed on the target system. The author propose two
types of Cluster Tests; open-loop Cluster Test and closep-Cluster Test.
Open-loop Cluster Test tests the functional correctness dister and the
temporal correctness of the interaction of task. Open-Blyster Test is also
used when testing for loss of messages in communicatiordeghelusters. In
closed-loop Cluster Testing more realistic inputs can bleafed robustness test
can be performed since the output are dynamically analyrddexcalculated
and can be fed back as input to the cluster and thereby clesedp. The main
difference of open-loop and closed-loop Cluster Testinia in closed-loop
Cluster Testing the application is run without modificatieith a environment
simulator and can therefore include test of temporal coness. However, in
both approaches a special test system has to be build todabale surround-
ing system from the clusters point of view.

Interface Testare tests that peripheral devices attached to the systems In
terface Buses behaves in an expected manner.

System Testtests the interaction between clusters and that the system a
whole behaves according to the specification.

Field Test tests the system with the real environment and real pergbher
devices. In this test phase the system is in its operationél@ment and can
therefore be used as customer acceptance test.

This test strategy test distributed real-time systems. ¢él@n the applica-
tion must be designed to follow the assumptions for the MARSen. Several
drawbacks are discussed in the paper and one of most imp@tatebugging
and testing on the target is the coupling of the monitoreti¢ohigh level lan-
guage used when programming. For the aspect of real-timedsding the
off-line scheduling assumption, as in any other real-timgtesm, reduce the
flexibility of the system but simplifies the analysis of thenter of test case
needed for code coverage. Since, off-line scheduled ma&l-$ystems can be
seen as a sequential program where the execution behakioown a-priori.

5.2.4 Test Bed Architectures

Kopetz et al. [17] propose a architecture for running distied fault-tolerant
real-time systems. The architecture is called Maintaia&®al-Time Systems
(MARS) architecture and supports statically scheduled haal-time systems.

www.manaraa.com

44 Regression Testing of Real-Time Systems

MARS consist of clusters that can be interconnected by aitranp network
topology. Tasks that have functionality relation are alecl to the same clus-
ter. There are no tools for automating the allocation of $agka cluster so
the designer itself is responsible for the appropriatepésssk allocations on
clusters.

Each cluster consists of a set of components that are inteemted by
a MARS-bus. A component is a self-contained computer the¢ identical
copies of the MARS-OS and tasks. The tasks are communicdwioggh the
MARS-bus by using MARS standardized messages. In the cltistee is
also an Interface Component that is connected to a InteBasdhat makes it
possible to communicate with the environment (another MARSter or the
physical process).

In Thane et al. [36] the authors presents a test architettiatds suitable
for testing of embedded systems. The test-rig consistsafyktem itself, with
one ore more nodes, and a test node on which the result of thputations in
the system are analyzed. On the test node it is determinkd famputations
produced the expected results or not.

5.2.5 Environment Simulators

As discussed in previous sections a real-time system istaraythat interacts
with its environment. In testing of such systems there mathbecase that the
environment does not exist yet because of parallel devedopwf hardware
and software or when the cost or safety inhibits the use ofghkhardware. In
these cases the environment must be simulated in order bbestesting of the
real-time software. A simulation is the execution of a cotepprogram that
represents a model of a real hardware. From the simulatiefénavior can
be used as stimuli to the system that is to be tested.

5.3 Regression Testing of Real-Time Systems

Zhu et al. [47] have proposed a framework for how to automegeassion test-
ing of real-time software in distributed environment. Tldigcuss testing of
safety-critical real-time systems such as pacemakers afiritlators. Test-
ing of software in pacemakers cannot be performed in itsrah&nvironment
since a failure of the pacemaker can lead to human injuridsttaerefore re-
quires expensive specialized hardware for testing. Thuspaating the testing
procedure is of importance for reducing the cost, usingekedquipmentin an

www.manaraa.com

Regression Testing of Real-Time Systems 45

efficient way and to remove the error-prone manual handlifige framework
is developed based on Onomas [27] regression testing oces

The distributed regression testing framework is built uploree compo-
nentstest servertest stationandtest clients In this context components can
be general purpose computers or specially designed systiriastances of
the three components are connected to a local area netwoekfimency and
high utilization of the test stations. The test server seagan oracle and have
access to the test database. When a test is to be exercisesstludient first
creates test cases based on the information from test dasbad the test en-
gineer. After test case creation the test clients are resplenfor submitting
the test and control and monitor the exercise of the test CHse test station
are the component on which the actual test case executi@nfizrmed.

The framework is designed with an object-oriented approabis makes it
easier, for example, for composing of complex test casasatieacomposition
of several test cases and using different test case selettitegies.

The framework consists of four different layengtwork layer support
layer, task layerandinterface layer In the network layer existing commu-
nication mechanisms provided by the operating system aé. uBhe support
layer have three responsibilities: connection for accé$ssh database, trans-
portation of files between the three components and remaieat@f method
invocations. The task layer is a set of programs that perfaasks such as test
case submission, test case selection and test case exe@di®asy use of the
framework for test engineers the interface layer providesal interfaces.

Other important issues for automation and flexibility of fremework are
the test case allocation, test load balancing, test i and recovery, com-
posite test cases and dynamic test station configuration.

To able to perform regression testing and to be able to téfigffaults are
removed the real-time software must have deterministiceien behavior.
The framework proposed by Zhu et al. seems to be aimed taimealsoft-
ware that is single-tasking or non-premptive programs thatsequentially
and therefore have deterministic execution behavior. &néetest method that
can handle the non-determinism in the execution behaviosésl the frame-
work cannot be used for achieving regression testing ofirtasking real-time
systems.

www.manaraa.com

46 Regression Testing of Real-Time Systems

www.manharaa.com

Chapter 6

Summary

There are many types of software and each of these softwags tpay require
specialized tools and methods for testing. For exampléntesf sequential
programs can be performed by feeding inputs to the prograitean observ-
ing the output in order to tell if the behavior of the executis correct accord-
ing to the requirements. This is because of that sequentigrams have a
deterministic execution behavior. To locate the defecttaudger can be used.

Testing techniques that test the behavior of sequentiapaéen programs
is a well established and explored area both for the inchlatisers and re-
searchers. However, testing of sequential programs is niotial task and
can only in rare cases be done with small efforts. This is beeavhen test-
ing computer programs a large amount of test cases must baisea (usually
manually.

To succeed in testing we need not only be concerned aboutdeeitton of
the software to reveal failures, we must also design thevso#t so that it can
be tested with little effort. It is also important that testiis integrated with the
development of the software. This has the benefit that gpgticonsidered at
early stages of the design of the software and that it caredserthe cost of
finding faults.

When failures are revealed the source code is correctechanarbgram is
re-tested. This retest is time consuming and costly beaafuse

e an analysis is performed in order to chose a subset of tes that must
be exercised,

o for each iterative step in the regression testing new tes#scare added

www.manaraa.com

48 CHAPTER 6. SUMMARY

that increases the number of test cases to run, and

e by not running test cases there is a potential risk of faudiadppresent
in the software.

Academia is interested in reducing the test efforts by reduthe number
of test cases while industry is interested in more effedtivds and automated
testing, leading to the situation where there are numeressarch results on
test case selection tools, but few on automation of retests.

Testing of concurrent programs is more complex than testingequen-
tial programs. The complexity is caused by the interleavestetion lead-
ing to indeterminacy of the execution behavior. That is,ause of the non-
deterministic execution behavior it is impossible to ebsaitthe correctness of
the program since each input can produce different outputs.

The common approach to test concurrent programs is to derstecases
based on the execution behavior (synchronization seqsgmdeen tasks are
communicating with each other. By the use of the synchrdiozaequences
the execution can be controlled at the synchronzation eyantl hence deter-
ministic testing can be achieved.

A real-time system must be tested for both functional caress and tem-
poral correctness. There are very few tools for testing-tiea¢ systems and
existing tools often requires special hardware or softveachitectures.

Regression testing of multi-tasking real-time systemsaisitsince it re-
quires not only control of the inputs and the state in the paogbut also con-
trol over the time at which events occur.

www.manaraa.com

Bibliography

[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. Londarcrémental
regression testing. IRroceedings of Conference on Software Mainte-
nance pages 348-357, 1993.

[2] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Ed priority
pre-emptive scheduling: A historical perspective.Real-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[3] C. Bernardeschi, L. Simoncini, and A. Fantechi. Validgtthe design
of dependable systems. Rroceedings First International Symposium
on Object-Oriented Real-Time Distributed Computing (I€338), pages
364-372, Apr 1998.

[4] A. Bertolino, F. Corradini, P. Inverardi, and H. MuccinDeriving test
plans from architectural descriptions. Rroceedings of the 2000 Inter-
national Conference on Software Engineeripgges 220-229, 2000.

[5] R. H. Carver and K-C. Tai. Replay and testing for concotigrograms.
In IEEE Softwarevolume 8(2), pages 66—74, 1991.

[6] Sang Chung, Hyeon Soo Kim, Hyun Seop Bae, and Don Gil LeggYo
Rae Kwon. Testing of concurrent programs after specificatizanges.
In Proceedings IEEE International Conference on Softwarentéaience
(ICSM '99), pages 199-208, 1999.

[7] S. J. Clarke and J. A. McDermid. Software fault trees arehkest pre-
conditions: A comparison and analysis, 1993.

[8] M. E. Fagan. Design and code inspections to reduce emgosogram
development. In1BM Systems Journalvolume 15(3), pages 182-211,
1976.

www.manaraa.com

50

BIBLIOGRAPHY

[9] J. Gait. A probe effect in concurrent programs. Software - Practice

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

and Experiencevolume 16(3), pages 225-233, Mars 1986.

H. Gomaa. A software design method for real-time syste@ommuni-
cations of the ACV27(9):938-949, 1984.

H. Gomaa. Software development of real-time systddmnmunications
of the ACM 29(7):657—668, 1986.

I. Granja and M. Jino. Techniques for regression testiBelecting test
case sets taylored to possibly modified functionalitiesPioceedings of
the Third European Conference., Software Maintenance awh§ineer-
ing, pages 2—-11, 1999.

R. Gupta, M. J. Harrold, and M. L. Soffa. An approach tgression test-
ing using slicing. IProceedings., Conference on Software Maintenance
pages 299-308, 1992.

A. Khoumsi. Testing distributed real-time systemsngsa distributed
architecture. InProceedings of the 2000 International Conference on
Software engineeringpages 126-135, 2000.

J. M. Kim, A. Porter, and G. Rothermel. An empirical syuaf regres-
sion test application frequency. Rroceedings of the 2000 International
Conference on Software engineeripgages 126-135, 2000.

Harry Koehnemann and Timothy Lindquist. Towards t&idgeel test-
ing and debugging tools for embedded software Piaceedings of the
conference on TRI-Ada '9pages 288-298. ACM Press, 1993.

H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabh. Genft,
and R. Zainlinger. Distributed fault-tolerant real-timgstems: The mars
approach. IHEEE Micro, volume 9(1), pages 2540, 1989.

L. Lamport. Time, clocks, and the ordering of events idistributed
system. InNCommunications of the ACMolume 21(7), pages 558-565,
July 1978.

J.C. Laprie. Dependability: Basic concepts and asgediterminology.

In Dependable Computing and Fault-Tolerant Systesfume 5. Springer
Verlag, 1992.

www.manaraa.com

BIBLIOGRAPHY 51

[20] Yann-Hang Lee, YoungJoon Byun, Ji Xiao, O. Goh, W. E. \§/oand
A. Lee. A toolsuite for testing analysis of real-time ada laggtions.
In Proceedings of 3rd IEEE Symposium on Application-Spegiiteths
and Software Engineering Technolegages 65-69, 2000.

[21] H. K. N. Leung. Selective regression testing assunmstiand fault de-
tecting ability. InInformation and Software Technolggsolume 37(10),
pages 531-537, 1995.

[22] H. K. N. Leung and L. White. Insights into regressiontiteg. In Pro-
ceedings., Conference on Software Maintenapages 60-69, 1989.

[23] H. K. N. Leung and L. White. A cost model to compare regies test
strategies. IiProceedings., Conference on Software Maintenapages
201-208, 1991.

[24] C. L. Liu and J. W. Layland. Scheduling algorithms for ltiprogram-
ming in a hard real-time environment. ournal of the ACMvolume
20(1), 1973.

[25] C. E. McDowell and D. P. Helmbold. Debugging concurrpragram.
In ACM Computing Surveysolume 21(4), pages 593-622, December
1989.

[26] IEEE Standard Glossary of Software :Engineering Teatogy. leee
standards collection, ieee std 610.12-1990. Septembér. 199

[27] A. K. Onoma, W. T. Tsai, M. Poonawala, and H. Suganumayréssion
testing in an industrial environment. Rroceedings. IEEE Transactions
on Software Engineeringolume 22(8), pages 529-551, 1996.

[28] D. L. Parnas. Tabular representation of relations.Téshnical Report,
Telecommunications Reasearch Institute of Ontario, Comicaton Re-
search Laboratory. Department of Electrical and Computegigeering,
McMaster University, Hamilton, Ontario Canada L8S 4K1, GR&port
number 260, 1992.

[29] G. Rothermel and M. J. Harrold. A safe, efficient algonit for regres-

sion test selection. IProceedings. IEEE International Conference on
Software Maintenance (CMS '93)ages 358-367, 1993.

www.manaraa.com

52 BIBLIOGRAPHY

[30] G. Rothermel and M. J. Harrold. Analyzing regressiost teelection
techniques. IfProceedings. Communications of the AGMIume 41(5),
pages 81-86, 1998.

[31] G. Rothermel, R. H. Untech, and M. J. Harrold. Test casaritization:
an empirical study. IProceedings. IEEE International Conference on
Software Maintenance (ICMS '99)ages 179-188, 1999.

[32] W. Schiitz. A test strategy for the distributed realdisystem mars. In
Proceedngs of the 1990 IEEE International Conference onfilaen Sys-
tems and Software Engineeringages 20-27, 1990.

[33] W. Schitz. Fundamentals issues in testing distribuvdatitime systems.
In Real-Time Systemsgolume 7, pages 129-157, Boston, 1994. Kluwer
Academic Publisher.

[34] Werner Schitz. Testing a distributed real-time systertne mars ap-
proach. Research Report 11/1989, Technische Universiign Whsti-
tut fir Technische Informatik, Treitlstr. 1-3/182-1, 10¢i@nna, Austria,
1989.

[35] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging conent ada pro-
grams by deterministic execution. IEEE Transactions on Software En-
gineering volume 17(1), pages 45-63, January 1991.

[36] H. Thane. Monitoring, testing and debugging of disitéd real-time
systems. IrDoctoral ThesisRoyal Institute of Technology, KTH, S100
44 Stockholm, Sweden, May 2000. Mechatronic Laboratorpddenent
of Machine Design.

[37] H. Thane and H. Hansson. Towards Systematic TestingistfiButed
Real-Time Systems. IRroceedings of The 20th IEEE Real-Time Systems
Symposiunpages 360-369, 1999.

[38] J. J. P. Tsai, K.-Y. Fang, and Y.-D. Bi. On real-time s@fte testing and
debugging. IrProceedings of Fourteenth Annual International Computer
Software and Application Conferengeges 512-518, Oct 1990.

[39] Naoshi Uchihira, Shinichi Honiden, and Toshibumi Seldiypersequen-
tial programming: A new way to develop concurrent prograb(8):44—
54, July/September 1997.

www.manaraa.com

BIBLIOGRAPHY 53

[40] J. M. Voas and K. W. Miller. Software testability:themeerification. In
IEEE Softwarevolume 12(3), pages 17-28, May 1995.

[41] S. N. Weiss. A formal framework for the study of concuntgrogram
testing. InProceedings of the Second Workshop on Software Testing,
Verificaion and Analysigpages 106—-113, July 1988.

[42] L. J. White and H. K. N. Leung. A firewall concept for botbrarol-flow
and data-flow in regression integration testing.Phoceedings., Confer-
ence on Software Maintenance, 19pages 262271, 1992.

[43] J. A. Whittaker. What is software testing and why is itrerd. INIEEE
Software January/February 2000.

[44] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A gtod ef-
fective regression testing in practice. Pnoceedings. The Eight Interna-
tional Symposium on Software Reliability Engineeripgges 264—-274,
1997.

[45] J. Xu and D. Parnas. Scheduling processes with rel@ass tdeadlines,
precedence and exclusion relations. IHEE Transaction on Software
Engineeringvolume 16(3), pages 360-369, 1990.

[46] R-D. Yang and C-G. Chung. Path analysis testing of corecti program.
In Information and Software Technolggwlume 34(1), pages 43-56, Jan
1992.

[47] F. Zhu, S. Rayadurgam, and W.-T. Tsai. Automating regi@n testing
for real-time software in a distributed environment. Rroceedings of
First International Symposium on Object-Oriented ReahdDistributed
Computing (ISORC 98pages 373—-382, 20-22 April 1998.

[48] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Softwaneit test
coverage and adequacACM Computing Surveys (CSUR)9(4):366—
427,1997.

www.manaraa.com

